The threshold for jigsaw percolation on random graphs
被引:0
|
作者:
Bollobas, Bela
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Dept Pure Math & Math Stat, Cambridge, England
Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
London Inst Math Sci, 35A South St, London W1K 2XF, EnglandUniv Cambridge, Dept Pure Math & Math Stat, Cambridge, England
Bollobas, Bela
[1
,2
,3
]
论文数: 引用数:
h-index:
机构:
Riordan, Oliver
[4
]
Slivken, Erik
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Davis, Dept Math, Davis, CA 95616 USAUniv Cambridge, Dept Pure Math & Math Stat, Cambridge, England
Slivken, Erik
[5
]
Smith, Paul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Dept Pure Math & Math Stat, Cambridge, EnglandUniv Cambridge, Dept Pure Math & Math Stat, Cambridge, England
Smith, Paul
[1
]
机构:
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge, England
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] London Inst Math Sci, 35A South St, London W1K 2XF, England
[4] Univ Oxford, Inst Math, Oxford, England
[5] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
Jigsaw percolation is a model for the process of solving puzzles within a social network, which was recently proposed by Brummitt, Chatterjee, Dey and Sivakoff. In the model there are two graphs on a single vertex set (the 'people' graph and the 'puzzle' graph), and vertices merge to form components if they are joined by an edge of each graph. These components then merge to form larger components if again there is an edge of each graph joining them, and soon. Percolation is said to occur if the process terminates with a single component containing every vertex. In this note we determine the threshold for percolation up to a constant factor, in the case where both graphs are Erdos-Renyi random graphs.
机构:
Univ Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WA, England
Univ Memphis, Memphis, TN 38152 USA
London Inst Math Sci, London, EnglandUniv Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WA, England
Bollobas, Bela
论文数: 引用数:
h-index:
机构:
Cooley, Oliver
Kang, Mihyun
论文数: 0引用数: 0
h-index: 0
机构:
Graz Univ Technol, Inst Discrete Math, Steyrergasse 30, A-8010 Graz, AustriaUniv Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WA, England
Kang, Mihyun
Koch, Christoph
论文数: 0引用数: 0
h-index: 0
机构:
Graz Univ Technol, Inst Discrete Math, Steyrergasse 30, A-8010 Graz, Austria
Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, EnglandUniv Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WA, England