Lyapunov type inequalities for even order differential equations with mixed nonlinearities

被引:15
作者
Agarwal, Ravi P. [1 ,2 ]
Ozbekler, Abdullah [1 ,3 ]
机构
[1] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[2] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[3] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
关键词
Lyapunov type inequality; mixed nonlinear; sub-linear; super-linear; LINEAR HAMILTONIAN-SYSTEMS; LIAPUNOV-TYPE INEQUALITY; STABILITY-CRITERIA;
D O I
10.1186/s13660-015-0633-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the case of oscillatory potentials, we present Lyapunov and Hartman type inequalities for even order differential equations with mixed nonlinearities: x((2n))(t) + (-1)(n-1) Sigma(m)(i=1) q(i)(t)vertical bar x(t)vertical bar(alpha i-1) x(t) = 0, where n,m epsilon N and the nonlinearities satisfy 0 < alpha(1) < center dot center dot center dot < alpha(j) < 1 < alpha(j+1) < center dot center dot center dot < alpha(m) < 2.
引用
收藏
页数:10
相关论文
共 44 条
[1]  
AGARWAL R. P., 1993, Error Inequalities in Polynomial Interpolation and Their Applications
[2]  
BEURLING A, 1945, ACTA MATH-DJURSHOLM, V77, P126
[3]   ON A LIAPOUNOFF CRITERION OF STABILITY [J].
BORG, G .
AMERICAN JOURNAL OF MATHEMATICS, 1949, 71 (01) :67-70
[4]   Opial's inequality and oscillation of 2nd order equations [J].
Brown, RC ;
Hinton, DB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (04) :1123-1129
[6]  
Cheng S. S., 1991, Fasc. Math., V23, P25
[7]  
Cheng S.S., 1983, Hokkaido Math. J, V12, P105
[8]  
Dahiya R. S., 1973, Journal of Mathematical and Physical Sciences, V7, P163
[9]   GREENS FUNCTION FOR N-N BOUNDARY-VALUE PROBLEM AND AN ANALOGUE OF HARTMANS RESULT [J].
DAS, KM ;
VATSALA, AS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 51 (03) :670-677
[10]   Estimates for eigenvalues of quasilinear elliptic systems [J].
De Napoli, Pablo L. ;
Pinasco, Juan P. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 227 (01) :102-115