Graph-based High-Order Relation Discovery for Fine-grained Recognition

被引:68
作者
Zhao, Yifan [1 ]
Yan, Ke [2 ]
Huang, Feiyue [2 ]
Li, Jia [1 ,3 ]
机构
[1] Beihang Univ, State Key Lab Virtual Real Technol & Syst, SCSE, Beijing, Peoples R China
[2] Tencent Youtu Lab, Shanghai, Peoples R China
[3] Peng Cheng Lab, Shenzhen, Peoples R China
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR46437.2021.01483
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fine-grained object recognition aims to learn effective features that can identify the subtle differences between visually similar objects. Most of the existing works tend to amplify discriminative part regions with attention mechanisms. Besides its unstable performance under complex backgrounds, the intrinsic interrelationship between different semantic features is less explored. Toward this end, we propose an effective graph-based relation discovery approach to build a contextual understanding of high-order relationships. In our approach, a high-dimensional feature bank is first formed and jointly regularized with semantic- and positional-aware high-order constraints, endowing rich attributes to feature representations. Second, to overcome the high-dimension curse, we propose a graph-based semantic grouping strategy to embed this high-order tensor bank into a low-dimensional space. Meanwhile, a group-wise learning strategy is proposed to regularize the features focusing on the cluster embedding center. With the collaborative learning of three modules, our module is able to grasp the stronger contextual details of fine-grained objects. Experimental evidence demonstrates our approach achieves new state-of-the-art on 4 widely-used fine-grained object recognition benchmarks.
引用
收藏
页码:15074 / 15083
页数:10
相关论文
共 50 条
  • [1] [Anonymous], 2018, Advances in Neural Information Processing Systems
  • [2] [Anonymous], 2008, IEEE INT C COMP VIS
  • [3] Belongie, 2011, CNS T 2011 001
  • [4] The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification
    Chang, Dongliang
    Ding, Yifeng
    Xie, Jiyang
    Bhunia, Ayan Kumar
    Li, Xiaoxu
    Ma, Zhanyu
    Wu, Ming
    Guo, Jun
    Song, Yi-Zhe
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 4683 - 4695
  • [5] Destruction and Construction Learning for Fine-grained Image Recognition
    Chen, Yue
    Bai, Yalong
    Zhang, Wei
    Mei, Tao
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5152 - 5161
  • [6] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [7] Ding Y. Y., 2019, SYSTEMS ENG, V6, P1
  • [8] Dubey A, 2018, 32 C NEURAL INFORM P, V31
  • [9] Pairwise Confusion for Fine-Grained Visual Classification
    Dubey, Abhimanyu
    Gupta, Otkrist
    Guo, Pei
    Raskar, Ramesh
    Farrell, Ryan
    Naik, Nikhil
    [J]. COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 : 71 - 88
  • [10] Estrach J.B., 2014, C TRACK P, V2014