FMOxFMO: Elucidating Excitonic Interactions in the Fenna-Matthews-Olson Complex with the Fragment Molecular Orbital Method

被引:13
作者
Kaliakin, Danil S. [1 ]
Nakata, Hiroya [2 ]
Kim, Yongbin [1 ]
Chen, Qifeng [1 ]
Fedorov, Dmitri G. [3 ]
Slipchenko, Lyudmila V. [1 ]
机构
[1] Purdue Univ, Dept Chem, 560 Oval Dr, W Lafayette, IN 47907 USA
[2] Res Inst Adv Mat & Devices, 5-3 Hikaridai 3, Seika, Kyoto 6190237, Japan
[3] Natl Inst Adv Ind Sci & Technol, Res Ctr Computat Design Adv Funct Mat CD FMat, Cent 2,Umezono 1-1-1, Tsukuba, Ibaraki 3058568, Japan
基金
美国国家科学基金会;
关键词
ELECTRONIC CIRCULAR-DICHROISM; DENSITY-FUNCTIONAL THEORY; FMO ANTENNA PROTEIN; PARTICLE MESH EWALD; ENERGY-TRANSFER; BACTERIOCHLOROPHYLL PROTEIN; CHLOROBACULUM-TEPIDUM; CHLOROBIUM-TEPIDUM; EXCITED-STATES; SPECTRA;
D O I
10.1021/acs.jctc.9b00621
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to study Forster resonance energy transfer (FRET), the fragment molecular orbital (FMO) method is extended to compute electronic couplings between local excitations via the excited state transition density model, enabling efficient calculations of nonlocal excitations in a large molecular system and overcoming the previous limitation of being able to compute only local excitations. The results of these simple but accurate models are validated against full quantum calculations without fragmentation. The developed method is applied to a very important photosynthetic pigment-protein complex, the Fenna-Matthews-Olson complex (FMOc), that is responsible for the energy transfer from a chlorosome to the reaction center in the green sulfur bacteria. Absorption and circular dichroism spectra of FMOc are simulated, and the role of the molecular environment on the excitations is revealed.
引用
收藏
页码:1175 / 1187
页数:13
相关论文
共 102 条
[1]   Calculation of pigment transition energies in the FMO protein [J].
Adolphs, Julia ;
Mueh, Frank ;
Madjet, Mohamed El-Amine ;
Renger, Thomas .
PHOTOSYNTHESIS RESEARCH, 2008, 95 (2-3) :197-209
[2]  
Alexeev Y, 2012, INT CONF HIGH PERFOR
[3]   Resonance energy transfer: Beyond the limits [J].
Andrews, David L. ;
Curutchet, Carles ;
Scholes, Gregory D. .
LASER & PHOTONICS REVIEWS, 2011, 5 (01) :114-123
[4]   Fast, Background-Free DNA-PAINT Imaging Using FRET-Based Probes [J].
Auer, Alexander ;
Strauss, Maximilian T. ;
Schlichthaerle, Thomas ;
Jungmann, Ralf .
NANO LETTERS, 2017, 17 (10) :6428-6434
[5]   Native FMO-reaction center supercomplex in green sulfur bacteria: an electron microscopy study [J].
Bina, David ;
Gardian, Zdenko ;
Vacha, Frantisek ;
Litvin, Radek .
PHOTOSYNTHESIS RESEARCH, 2016, 128 (01) :93-102
[6]   Applications of quantum dots in Food Science and biology [J].
Bonilla, Jose C. ;
Bozkurt, Fatih ;
Ansari, Shadi ;
Sozer, Nesli ;
Kokini, Jozef L. .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2016, 53 :75-89
[7]   Exciton Transport in Molecular Aggregates - From Natural Antennas to Synthetic Chromophore Systems [J].
Brixner, Tobias ;
Hildner, Richard ;
Koehler, Juergen ;
Lambert, Christoph ;
Wuerthner, Frank .
ADVANCED ENERGY MATERIALS, 2017, 7 (16)
[8]   Effect of diagonal energy disorder on circular dichroism spectra of Fenna-Matthews-Olson trimers [J].
Buck, DR ;
Savikhin, S ;
Struve, WS .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (42) :8395-8397
[9]   The Eighth Bacteriochlorophyll Completes the Excitation Energy Funnel in the FMO Protein [J].
Busch, Marcel Schmidt Am ;
Mueh, Frank ;
Madjet, Mohamed El-Amine ;
Renger, Thomas .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (02) :93-98
[10]  
Case D., Amber 2014