Fibrous self-powered sensor with high stretchability for physiological information monitoring

被引:44
|
作者
Fu, Kun [1 ]
Zhou, Jie [1 ]
Wu, Hanguang [2 ]
Su, Zhiqiang [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing Key Lab Adv Funct Polymer Composites, Beijing 100029, Peoples R China
[2] Beijing Inst Fash Technol, Beijing Key Lab Clothing Mat R&D & Assessment, Beijing 100029, Peoples R China
基金
北京市自然科学基金;
关键词
Self-powered; Fibrous sensor; Stretchability; Human motion monitoring; TRIBOELECTRIC NANOGENERATOR; STRAIN SENSOR; CORE-SHELL; FIBER; COMPOSITES;
D O I
10.1016/j.nanoen.2021.106258
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triboelectric nanogenerator (TENG) can convert mechanical energy into electricity, thus realizing the development of a new type of self-powered wearable sensors, which generate electric signals directly upon mechanical stimuli. On another hand, good stretchability is also an essential character of the wearable sensors to guarantee deformation consistence with the human body. In this work, a fibrous stretchable TENG-based sensor (FS-TENG sensor) with core-sheath structure is fabricated and applied in physiological monitoring. The output open-circuit voltage and shout-circuit current of FS-TENG sensor can reach nearly 10 V and 0.6 mu A, respectively. The elastic substrates and stretchable electrodes provide the FS-TENG sensor with good resilience, and the output voltage of the sensor keeps stable under 60% strain extension, demonstrating the stability of the sensor at large deformation. Meanwhile, the FS-TENG sensor can detect ultralow pressure down to 0.02 N and achieve 26.75 V N-1 in low pressure, showing its ultralow detection limit and outstanding sensitivity to external force. Taking advantage of the excellent sensing performance of the FS-TENG sensor, we applied it in the human motions monitoring, including large movements (joints bending and step) and subtle vital signs (pulse, phonation, and expression). Moreover, a tactile sensor array with 3 x 3 pixels is fabricated by weaving 6 FS-TENG sensors to realize the pressure distribution recognition.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Flexible Hybrid Nanogenerator for Self-Powered Weather and Healthcare Monitoring Sensor
    Lee, Taegoon
    Kim, Inkyum
    Kim, Daewon
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (12)
  • [22] A Self-Powered Magnetostrictive Sensor for Long-Term Earthquake Monitoring
    Ren, Limin
    Yu, Kun
    Tan, Yisong
    IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (03)
  • [23] Self-Powered Piezoionic Strain Sensor toward the Monitoring of Human Activities
    Liu, Yang
    Hu, Ying
    Zhao, Jingjing
    Wu, Guan
    Tao, Xiaoming
    Chen, Wei
    SMALL, 2016, 12 (36) : 5074 - 5080
  • [24] A Self-Powered Portable Flexible Sensor of Monitoring Speed Skating Techniques
    Lu, Zhuo
    Zhu, Yongsheng
    Jia, Changjun
    Zhao, Tianming
    Bian, Meiyue
    Jia, Chaofeng
    Zhang, Yiqiao
    Mao, Yupeng
    BIOSENSORS-BASEL, 2021, 11 (04):
  • [25] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Li, Yingzhe
    Liu, Chaoran
    Hu, Sanshan
    Sun, Peng
    Fang, Lingxing
    Lazarouk, Serguei
    Labunov, Vladimir
    Yang, Weihuang
    Li, Dujuan
    Fan, Kai
    Wang, Gaofeng
    Dong, Linxi
    Che, Lufeng
    ACOUSTICS AUSTRALIA, 2022, 50 (03) : 383 - 391
  • [26] A high-efficiency self-powered wireless sensor node for monitoring concerning vibratory events
    Xu, Dacheng
    Li, Suiqiong
    Li, Mengyang
    Xie, Danpeng
    Dong, Chuan
    Li, Xinxin
    SMART MATERIALS AND STRUCTURES, 2017, 26 (09)
  • [27] Self-powered wireless sensor networks for remote patient monitoring in hospitals
    Hande, Abhiman
    Polk, Todd
    Walker, William
    Bhatia, Dinesh
    SENSORS, 2006, 6 (09) : 1102 - 1117
  • [28] Wireless Single-Electrode Self-Powered Piezoelectric Sensor for Monitoring
    Liu, Qi
    Wang, Xiao-Xiong
    Song, Wei-Zhi
    Qiu, Hui-Jing
    Zhang, Jun
    Fan, Zhiyong
    Yu, Miao
    Long, Yun-Ze
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (07) : 8288 - 8295
  • [29] A Self-Powered Wireless Temperature Sensor Platform for Foot Ulceration Monitoring
    Duah, Joseph Agyemang
    Lee, Kye-Shin
    Kim, Byung-Gyu
    SENSORS, 2024, 24 (20)
  • [30] Wireless Self-powered Plant Health-monitoring Sensor System
    Tanaka, Ami
    Ishihara, Toyoshi
    Utsunomiya, Fumiyasu
    Douseki, Takakuni
    2012 IEEE SENSORS PROCEEDINGS, 2012, : 311 - 314