A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana

被引:72
作者
Safi, Hela [1 ]
Saibi, Walid [1 ]
Alaoui, Meryem Mrani [2 ]
Hmyene, Abdelaziz [2 ]
Masmoudi, Khaled [1 ]
Hanin, Moez [1 ]
Brini, Faical [1 ]
机构
[1] Univ Sfax, Ctr Biotechnol Sfax, Plant Protect & Improvement Lab, Sfax 3018, Tunisia
[2] Univ Hassan II Mohammedia, Fac Sci & Tech, Lab Biochim Environm & Agroalimentaire, Mohammadia 20650, Morocco
关键词
Abiotic and biotic stresses; Gene expression; Jasmonic acid; Lipid transfer protein; Transgenic Arabidopsis plants; Wheat; PLANT DEFENSE; ENHANCED RESISTANCE; GENE FAMILY; EXPRESSION; PURIFICATION; PATHOGEN; SEQUENCE; DROUGHT; BINDING;
D O I
10.1016/j.plaphy.2015.02.008
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, we report the isolation and characterization of a novel gene TdLTP4 encoding an LTP protein from durum wheat [Triticum turgidum L. subsp. Durum Desf.J. Molecular Phylogeny analyses of wheat TdLTP4 gene showed a high identity to other plant LTPs. Predicted three-dimensional structural model revealed the presence of six helices and nine loop turns. Expression analysis in two local durum wheat varieties with marked differences in salt and drought tolerance, revealed a higher transcript accumulation of TdLTP4 under different stress conditions in the tolerant variety, compared to the sensitive one. The overexpression of TdLTP4 in Arabidopsis resulted in a promoted plant growth under various stress conditions including NaCl, ABA, JA and H2O2 treatments. Moreover, the LTP-overexpressing lines exhibit less sensitivity to jasmonate than wild-type plants. Furthermore, detached leaves from transgenic Arabidopsis expressing TdLTP4 gene showed enhanced fungal resistance against Alternaria solani and Botrytis cinerea. Together, these data provide the evidence for the involvement of TdLTP4 gene in the tolerance to both abiotic and biotic stresses in crop plants. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:64 / 75
页数:12
相关论文
共 41 条
[1]  
Bento A., 1998, A pratica da Proteccao Integrada na Oliveira, P1, DOI [10.1007/978-94-011-5242-6_2, DOI 10.1007/978-94-011-5242-6_2]
[2]   From elicitins to lipid-transfer proteins:: a new insight in cell signalling involved in plant defence mechanisms [J].
Blein, JP ;
Coutos-Thévenot, P ;
Marion, D ;
Ponchet, M .
TRENDS IN PLANT SCIENCE, 2002, 7 (07) :293-296
[3]   Physiological and molecular analyses of seedlings of two Tunisian durum wheat (Triticum turgidum L. subsp Durum [Desf.]) varieties showing contrasting tolerance to salt stress [J].
Brini, Faical ;
Amara, Imen ;
Feki, Kaouther ;
Hanin, Moez ;
Khoudi, Habib ;
Masmoudi, Khaled .
ACTA PHYSIOLOGIAE PLANTARUM, 2009, 31 (01) :145-154
[4]   Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana [J].
Brotman, Yariv ;
Lisec, Jan ;
Meret, Michael ;
Chet, Ilan ;
Willmitzer, Lothar ;
Viterbo, Ada .
MICROBIOLOGY-SGM, 2012, 158 :139-146
[5]   A lipid transfer protein binds to a receptor involved in the control of plant defence responses [J].
Buhot, N ;
Douliez, JP ;
Jacquemard, A ;
Marion, D ;
Tran, V ;
Maume, BF ;
Milat, ML ;
Ponchet, M ;
Mikès, V ;
Kader, JC ;
Blein, JP .
FEBS LETTERS, 2001, 509 (01) :27-30
[6]   Modulation of the biological activity of a tobacco LTP1 by lipid complexation [J].
Buhot, N ;
Gomès, E ;
Milat, ML ;
Ponchet, M ;
Marion, D ;
Lequeu, J ;
Delrot, S ;
Coutos-Thévenot, P ;
Blein, JP .
MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (11) :5047-5052
[7]   Differential effects of five types of antipathogenic plant peptides on model membranes [J].
Caaveiro, JMM ;
Molina, A ;
GonzalezManas, JM ;
RodriguezPalenzuela, P ;
GarciaOlmedo, F ;
Goni, FM .
FEBS LETTERS, 1997, 410 (2-3) :338-342
[8]   Purification and characterization of a small (7.3 kDa) putative lipid transfer protein from maize seeds [J].
Castro, MS ;
Gerhardt, IR ;
Orrù, S ;
Pucci, P ;
Bloch, C .
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2003, 794 (01) :109-114
[9]   Arabidopsis LTPG Is a Glycosylphosphatidylinositol-Anchored Lipid Transfer Protein Required for Export of Lipids to the Plant Surface [J].
DeBono, Allan ;
Yeats, Trevor H. ;
Rose, Jocelyn K. C. ;
Bird, David ;
Jetter, Reinhard ;
Kunst, Ljerka ;
Samuelsa, Lacey .
PLANT CELL, 2009, 21 (04) :1230-1238
[10]   Evolutionary History of the Non-Specific Lipid Transfer Proteins [J].
Edstam, Monika M. ;
Viitanen, Lenita ;
Salminen, Tiina A. ;
Edqvist, Johan .
MOLECULAR PLANT, 2011, 4 (06) :947-964