Opposition-Based Tunicate Swarm Algorithm for Parameter Optimization of Solar Cells

被引:35
作者
Sharma, Abhishek [1 ]
Sharma, Abhinav [2 ]
Dasgotra, Ankit [1 ]
Jately, Vibhu [3 ]
Ram, Mangey [4 ,5 ]
Rajput, Shailendra [6 ]
Averbukh, Moshe [6 ]
Azzopardi, Brian [3 ]
机构
[1] Univ Petr & Energy Studies, Dept Res & Dev, Dehra Dun 248007, Uttarakhand, India
[2] Univ Petr & Energy Studies, Dept Elect & Elect Engn, Dehra Dun 248007, Uttarakhand, India
[3] Inst Engn & Transport, MCAST Energy Res Grp, Malta Coll Arts Sci & Technol MCAST, Paola 9032, Malta
[4] Graph Era, Dept Math Comp Sci & Engn, Dehra Dun 248002, Uttarakhand, India
[5] Peter Great St Petersburg Polytech Univ, Inst Adv Mfg Technol, St Petersburg 195251, Russia
[6] Ariel Univ, Dept Elect & Elect Engn, IL-40700 Ariel, Israel
基金
欧盟地平线“2020”;
关键词
Machine learning; parameter extraction; photovoltaic cells; metaheuristics; tunicate swarm algorithm; opposition-based learning; MATHEMATICAL-MODELING FRAMEWORK; PV CELLS; PHOTOVOLTAIC CELLS; EXTRACTION; IDENTIFICATION; PERFORMANCE; DIODE;
D O I
10.1109/ACCESS.2021.3110849
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Parameter estimation of photovoltaic modules is an essential step to observe, analyze, and optimize the performance of solar power systems. An efficient optimization approach is needed to obtain the finest value of unknown parameters. Herewith, this article proposes a novel opposition-based tunicate swarm algorithm for parameter estimation. The proposed algorithm is developed based on the exploration and exploitation components of the tunicate swarm algorithm. The opposition-based learning mechanism is employed to improve the diversification of the search space to provide a precise solution. The parameters of three types of photovoltaic modules (two polycrystalline and one monocrystalline) are estimated using the proposed algorithm. The estimated parameters show good agreement with the measured data for three modules at different irradiance levels. Performance of the developed opposition-based tunicate swarm algorithm is compared with other predefined algorithms in terms of robustness, statistical, and convergence analysis. The root mean square error values are minimum (6.83 x 10(-4), 2.06 x 10(-4), and 4.48 x 10(-6)) compared to the tunicate swarm algorithm and other predefined algorithms. Proposed algorithm decreases the function cost by 30.11%, 97.65%, and 99.80% for the SS2018 module, SolarexMSX-60 module, and Leibold solar module, respectively, as compared to the basic tunicate swarm algorithm. The statistical results and convergence speed depicts the outstanding performance of the anticipated approach. Furthermore, the Friedman ranking tests confirm the competence and reliability of the developed approach.
引用
收藏
页码:125590 / 125602
页数:13
相关论文
共 65 条
[1]   Parameter estimation of photovoltaic models using an improved marine predators algorithm [J].
Abdel-Basset, Mohamed ;
El-Shahat, Doaa ;
Chakrabortty, Ripon K. ;
Ryan, Michael .
ENERGY CONVERSION AND MANAGEMENT, 2021, 227
[2]   No Free Lunch Theorem: A Review [J].
Adam, Stavros P. ;
Alexandropoulos, Stamatios-Aggelos N. ;
Pardalos, Panos M. ;
Vrahatis, Michael N. .
APPROXIMATION AND OPTIMIZATION: ALGORITHMS, COMPLEXITY AND APPLICATIONS, 2019, 145 :57-82
[3]   Optimal extraction of solar cell parameters using pattern search [J].
AlHajri, M. F. ;
El-Naggar, K. M. ;
AlRashidi, M. R. ;
Al-Othman, A. K. .
RENEWABLE ENERGY, 2012, 44 :238-245
[4]   Ant Lion Optimization Algorithm for Renewable Distributed Generations [J].
Ali, E. S. ;
Abd Elazim, S. M. ;
Abdelaziz, A. Y. .
ENERGY, 2016, 116 :445-458
[5]  
[Anonymous], 2011, 2011 INT C EL INF CO, DOI DOI 10.1109/ICEICE.2011.5777246
[6]   Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach [J].
Askarzadeh, Alireza ;
Coelho, Leandro dos Santos .
ENERGY CONVERSION AND MANAGEMENT, 2015, 89 :608-614
[7]   Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
SOLAR ENERGY, 2013, 90 :123-133
[8]   Artificial bee swarm optimization algorithm for parameters identification of solar cell models [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
APPLIED ENERGY, 2013, 102 :943-949
[9]   Parameter identification for solar cell models using harmony search-based algorithms [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
SOLAR ENERGY, 2012, 86 (11) :3241-3249
[10]   A mathematical modeling framework to evaluate the performance of single diode and double diode based SPV systems [J].
Bana, Sangram ;
Saini, R. P. .
ENERGY REPORTS, 2016, 2 :171-187