Mapping of plastic greenhouses and mulching films from very high resolution remote sensing imagery based on a dilated and non-local convolutional neural network

被引:34
作者
Feng, Quanlong [1 ]
Niu, Bowen [1 ]
Chen, Boan [1 ]
Ren, Yan [1 ]
Zhu, Dehai [1 ]
Yang, Jianyu [1 ]
Liu, Jiantao [2 ]
Ou, Cong [1 ]
Li, Baoguo [1 ]
机构
[1] China Agr Univ, Coll Land Sci & Technol, Beijing 100083, Peoples R China
[2] Shandong Jianzhu Univ, Sch Surveying & Geoinformat, Jinan 250101, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Plastic greenhouses; Mulching films; Classification; Dilated convolution; Non-local; CLASSIFIER;
D O I
10.1016/j.jag.2021.102441
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
As the important components of modern facility agriculture, both plastic greenhouses and mulching films have been widely utilized in agriculture production. Due to the similarity of spectral signatures, it remains a challenging task to separate plastic greenhouses and mulching films from each other. Meanwhile, deep learning has achieved great performance in many computer vison tasks, and has become a research hotspot in remote sensing image analysis. However, deep learning has been rarely studied for the accurate mapping of agricultural plastic covers, especially for the long-neglected issue of the separation between plastic greenhouses and mulching films. Therefore, this study aims to propose a deep learning model to detect and separate plastic greenhouses and mulching films from very high resolution (VHR) remotely sensed data, providing the agricultural plastic covered maps for relevant decision-makers. In specific, the proposed model is a dilated and non-local convolutional neural network (DNCNN), which consists of several multi-scale dilated convolution blocks and a non-local feature extraction module. The former contains a series of dilated convolutions with various dilated rates, which is to aggregate multi-level spatial features hence to account for the scale variations of land objects. While the latter utilizes a non-local module to extract the global and contextual features to further enhance the interclass separability. Experimental results from Shenxian, China and Al-Kharj, Saudi Arabia show that the DNCNN in this study obtains a high accuracy with an overall accuracy of 89.6% and 92.6%, respectively. Compared to standard convolution, the inclusion of dilated convolution could raise the classification accuracy by 2.7%. In addition, ablation analysis shows that the non-local feature extraction module could also improve the classification accuracy by about 2%. This study demonstrates that the proposed DNCNN yields an effective approach for the accurate agricultural plastic cover mapping from VHR remotely sensed imagery.
引用
收藏
页数:12
相关论文
共 35 条
[31]   Multisource Remote Sensing Data Classification Based on Convolutional Neural Network [J].
Xu, Xiaodong ;
Li, Wei ;
Ran, Qiong ;
Du, Qian ;
Gao, Lianru ;
Zhang, Bing .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (02) :937-949
[32]   Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index [J].
Yang, Dedi ;
Chen, Jin ;
Zhou, Yuan ;
Chen, Xiang ;
Chen, Xuehong ;
Cao, Xin .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 128 :47-60
[33]  
Yu F., 2016, CoRR. abs/1511.07122
[34]   Deep Learning for Remote Sensing Data A technical tutorial on the state of the art [J].
Zhang, Liangpei ;
Zhang, Lefei ;
Du, Bo .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2016, 4 (02) :22-40
[35]   Deep Learning in Remote Sensing [J].
Zhu, Xiao Xiang ;
Tuia, Devis ;
Mou, Lichao ;
Xia, Gui-Song ;
Zhang, Liangpei ;
Xu, Feng ;
Fraundorfer, Friedrich .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2017, 5 (04) :8-36