Mapping of plastic greenhouses and mulching films from very high resolution remote sensing imagery based on a dilated and non-local convolutional neural network

被引:34
作者
Feng, Quanlong [1 ]
Niu, Bowen [1 ]
Chen, Boan [1 ]
Ren, Yan [1 ]
Zhu, Dehai [1 ]
Yang, Jianyu [1 ]
Liu, Jiantao [2 ]
Ou, Cong [1 ]
Li, Baoguo [1 ]
机构
[1] China Agr Univ, Coll Land Sci & Technol, Beijing 100083, Peoples R China
[2] Shandong Jianzhu Univ, Sch Surveying & Geoinformat, Jinan 250101, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Plastic greenhouses; Mulching films; Classification; Dilated convolution; Non-local; CLASSIFIER;
D O I
10.1016/j.jag.2021.102441
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
As the important components of modern facility agriculture, both plastic greenhouses and mulching films have been widely utilized in agriculture production. Due to the similarity of spectral signatures, it remains a challenging task to separate plastic greenhouses and mulching films from each other. Meanwhile, deep learning has achieved great performance in many computer vison tasks, and has become a research hotspot in remote sensing image analysis. However, deep learning has been rarely studied for the accurate mapping of agricultural plastic covers, especially for the long-neglected issue of the separation between plastic greenhouses and mulching films. Therefore, this study aims to propose a deep learning model to detect and separate plastic greenhouses and mulching films from very high resolution (VHR) remotely sensed data, providing the agricultural plastic covered maps for relevant decision-makers. In specific, the proposed model is a dilated and non-local convolutional neural network (DNCNN), which consists of several multi-scale dilated convolution blocks and a non-local feature extraction module. The former contains a series of dilated convolutions with various dilated rates, which is to aggregate multi-level spatial features hence to account for the scale variations of land objects. While the latter utilizes a non-local module to extract the global and contextual features to further enhance the interclass separability. Experimental results from Shenxian, China and Al-Kharj, Saudi Arabia show that the DNCNN in this study obtains a high accuracy with an overall accuracy of 89.6% and 92.6%, respectively. Compared to standard convolution, the inclusion of dilated convolution could raise the classification accuracy by 2.7%. In addition, ablation analysis shows that the non-local feature extraction module could also improve the classification accuracy by about 2%. This study demonstrates that the proposed DNCNN yields an effective approach for the accurate agricultural plastic cover mapping from VHR remotely sensed imagery.
引用
收藏
页数:12
相关论文
共 35 条
[1]   Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses [J].
Aguera, Francisco ;
Aguilar, Fernando J. ;
Aguilar, Manuel A. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2008, 63 (06) :635-646
[2]   GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond [J].
Cao, Yue ;
Xu, Jiarui ;
Lin, Stephen ;
Wei, Fangyun ;
Hu, Han .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :1971-1980
[3]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[4]   Multilevel Cloud Detection for High-Resolution Remote Sensing Imagery Using Multiple Convolutional Neural Networks [J].
Chen, Yang ;
Fan, Rongshuang ;
Bilal, Muhammad ;
Yang, Xiucheng ;
Wang, Jingxue ;
Li, Wei .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (05)
[5]  
COX DR, 1958, J R STAT SOC B, V20, P215
[6]   Integrating Multitemporal Sentinel-1/2 Data for Coastal Land Cover Classification Using a Multibranch Convolutional Neural Network: A Case of the Yellow River Delta [J].
Feng, Quanlong ;
Yang, Jianyu ;
Zhu, Dehai ;
Liu, Jiantao ;
Guo, Hao ;
Bayartungalag, Batsaikhan ;
Li, Baoguo .
REMOTE SENSING, 2019, 11 (09)
[7]   Multisource Hyperspectral and LiDAR Data Fusion for Urban Land-Use Mapping based on a Modified Two-Branch Convolutional Neural Network [J].
Feng, Quanlong ;
Zhu, Dehai ;
Yang, Jianyu ;
Li, Baoguo .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (01)
[8]   Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest Classifier-A Case of Yuyao, China [J].
Feng, Quanlong ;
Liu, Jiantao ;
Gong, Jianhua .
WATER, 2015, 7 (04) :1437-1455
[9]   Global-Local Attention Network for Aerial Scene Classification [J].
Guo, Yiyou ;
Ji, Jinsheng ;
Lu, Xiankai ;
Huo, Hong ;
Fang, Tao ;
Li, Deren .
IEEE ACCESS, 2019, 7 :67200-67212
[10]  
He K., 2015, IEEE I CONF COMP VIS, DOI [10.1109/ICCV.2015.123, DOI 10.1109/ICCV.2015.123, DOI 10.48550/ARXIV.1502.01852]