Optimizing biochar and conductive carbon black composites as cathode catalysts for microbial fuel cells to improve isopropanol removal and power generation

被引:13
作者
Liu, Shu-Hui [1 ]
You, Shang-Sian [1 ]
Lin, Chi-Wen [1 ,2 ,5 ]
Cheng, Yu-Shen [3 ,4 ]
机构
[1] Natl Yunlin Univ Sci & Technol, Dept Safety Hlth & Environm Engn, Yunlin 64002, Taiwan
[2] Natl Yunlin Univ Sci & Technol, Grad Sch Engn Sci & Technol, Yunlin 64002, Taiwan
[3] Natl Yunlin Univ Sci & Technol, Dept Chem & Mat Engn, Yunlin 64002, Taiwan
[4] Natl Yunlin Univ Sci & Technol, Bachelors Program Ind Technol, Yunlin 64002, Taiwan
[5] Natl Yunlin Univ Sci & Technol, Dept Safety Hlth & Environm Engn, 123 Univ Rd Sec 3, Yunlin 64002, Taiwan
关键词
Biochar; Cathodic modification; Optimization; Electricity generation; Pollutant removal; OXYGEN REDUCTION CATALYST; ELECTRICAL-CONDUCTIVITY; PERFORMANCE; RESISTANCE;
D O I
10.1016/j.renene.2022.09.069
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A cathodic metal-based catalyst in a microbial fuel cell (MFCs) is costly so alternative carbon-based materials, such as biochar, are favored. Biochar that is obtained from agricultural waste (peanut husks) was combined with high-conductivity conductive carbon black (CCB) to form a cathodic composite catalyst (biochar/CCB). The optimal ratio of biochar/CCB (70% over 30%) and its volume (4.45 cm3) were obtained by response surface methodology (RSM). A cathode catalyst with low resistance (55.1 omega) and a high reduction peak current (7.26 mu A) was developed with an overall regression model explanatory power (R2) >0.95. Following the optimal biochar/ CCB modification, the removal efficiency, voltage output, power density and Coulombic efficiency of the MFC were 6.91-21.6%, 1.82, 2.47 and 2.56 times higher, respectively, than those of a carbon MFC without a catalyst. The microbial community of the anode indicates that the cathode modified by biochar/CCB can promote the growth of electrogenic and degrading bacteria to achieve improved power production and pollutant removal efficiency. This result demonstrates that the optimized biochar/CCB in this study has great potential for sub-sequent use in pollutant treatment and power generation systems.
引用
收藏
页码:1318 / 1328
页数:11
相关论文
共 50 条
  • [21] Effects of cathode/anode electron accumulation on soil microbial fuel cell power generation and heavy metal removal
    Zhang, Jingran
    Sun, Yilun
    Zhang, Haochi
    Cao, Xian
    Wang, Hui
    Li, Xianning
    ENVIRONMENTAL RESEARCH, 2021, 198
  • [22] Effects of Anode and Cathode Area on Organic Compounds Removal and Power Generation in Membraneless Microbial Fuel Cell (MFC)
    Santoro, Carlo
    Cristiani, Pierangela
    Agrios, Alexander G.
    Li, Baikun
    BATTERY/ENERGY TECHNOLOGY (GENERAL) - 220TH ECS MEETING, 2012, 41 (11): : 57 - 63
  • [23] Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell
    Zhang, Fang
    Cheng, Shaoan
    Pant, Deepak
    Van Bogaert, Gilbert
    Logan, Bruce E.
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (11) : 2177 - 2179
  • [24] Increasing power generation for scaling up single-chamber air cathode microbial fuel cells
    Cheng, Shaoan
    Logan, Bruce E.
    BIORESOURCE TECHNOLOGY, 2011, 102 (06) : 4468 - 4473
  • [25] An Overview of Microbial Fuel Cells within Constructed Wetland for Simultaneous Nutrient Removal and Power Generation
    Paucar, N. Evelin
    Sato, Chikashi
    ENERGIES, 2022, 15 (18)
  • [26] Effects of carbon source on electricity generation and PAH removal in aquaculture sediment microbial fuel cells
    Zhang, Haochi
    Chao, Bo
    Wang, Hui
    Li, Xianning
    ENVIRONMENTAL TECHNOLOGY, 2022, 43 (26) : 4066 - 4077
  • [27] A Reasonable Design of MnCo2S4 and Activated Carbon Composite as Cathode Catalyst to Improve the Power Output of Microbial Fuel Cells
    Lu, Jinrong
    Ren, Linde
    Li, Cheng
    Liu, Hua
    CATALYSIS LETTERS, 2024, 154 (05) : 2340 - 2352
  • [28] Sewage sludge-derived carbon-doped manganese as efficient cathode catalysts in microbial fuel cells
    Huang, Jingjing
    Feng, Huajun
    Jia, Yufeng
    Shen, Dongsheng
    Xu, Yingfeng
    WATER SCIENCE AND TECHNOLOGY, 2019, 80 (08) : 1399 - 1406
  • [29] Reduced graphene oxide modified activated carbon for improving power generation of air-cathode microbial fuel cells
    Yang, Yang
    Liu, Tianyu
    Wang, Hanyu
    Zhu, Xun
    Ye, Dingding
    Liao, Qiang
    Liu, Ke
    Chen, Shaowei
    Li, Yat
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (09) : 1279 - 1287
  • [30] Constructed wetland-microbial fuel cells enhanced with iron carbon fillers for ciprofloxacin wastewater treatment and power generation
    Dai, Meixue
    Wu, Yiming
    Wang, Jie
    Lv, Zhe
    Li, Fei
    Zhang, Yujia
    Kong, Qiang
    CHEMOSPHERE, 2022, 305