Modeling of the cure fraction in survival studies

被引:100
作者
Lambert, Paul C. [1 ]
机构
[1] Univ Leicester, Dept Hlth Sci, Ctr Biostat & Genet Epidemiol, Leicester LE1 7RH, Leics, England
关键词
st0131; strsmix; strsnmix; predict; relative survival; cure models; split population models; postestimation;
D O I
10.1177/1536867X0700700304
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Cure models are a special type of survival analysis model where it is assumed that there are a proportion of subjects who will never experience the event and thus the survival curve will eventually reach a plateau. In population-based cancer studies, cure is said to occur when the mortality (hazard) rate in the diseased group of individuals returns to the same level as that expected in the general population. The cure fraction is of interest to patients and a useful measure to monitor trends and differences in survival of curable disease. I will describe the strsmix and strsnmix commands, which fit the two main types of cure fraction model, namely, the mixture and nonmixture cure fraction models. These models allow incorporation of the expected background mortality rate and thus enable the modeling of relative survival when cure is a possibility. I give an example to illustrate the commands.
引用
收藏
页码:351 / 375
页数:25
相关论文
共 17 条
[1]  
[Anonymous], 1999, Cancer survival trends in England and Wales, 1971-1995: deprivation and NHS region
[2]  
Begg CB, 2002, JNCI-J NATL CANCER I, V94, P1044
[3]   Deriving more up-to-date estimates of long-term patient survival [J].
Brenner, H ;
Gefeller, O .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 1997, 50 (02) :211-216
[4]  
De Angelis R, 1999, STAT MED, V18, P441, DOI 10.1002/(SICI)1097-0258(19990228)18:4<441::AID-SIM23>3.3.CO
[5]  
2-D
[6]   Regression models for relative survival [J].
Dickman, PW ;
Sloggett, A ;
Hills, M ;
Hakulinen, T .
STATISTICS IN MEDICINE, 2004, 23 (01) :51-64
[7]  
EDERER FRED, 1961, NATL CANCER INST MONOGR, V6, P101
[8]   A relative survival regression model using B-spline functions to model non-proportional hazards [J].
Giorgi, R ;
Abrahamowicz, M ;
Quantin, C ;
Bolard, P ;
Esteve, J ;
Gouvernet, J ;
Faivre, J .
STATISTICS IN MEDICINE, 2003, 22 (17) :2767-2784
[9]  
Ibrahim J.G., 2001, BAYESIAN SURVIVAL AN, DOI DOI 10.1007/978-1-4757-3447-8
[10]   Estimating and modeling the cure fraction in population-based cancer survival analysis [J].
Lambert, Paul C. ;
Thompson, John R. ;
Weston, Claire L. ;
Dickman, Paul W. .
BIOSTATISTICS, 2007, 8 (03) :576-594