Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(001) barrier

被引:516
作者
Yuasa, S.
Djayaprawira, D. D.
机构
[1] Nanoelectr Res Inst, Natl Inst Adv Ind Sci & Technol AIST, Tsukuba, Ibaraki 3058568, Japan
[2] Canon ANELVA Corp, Elect Device Equipment Div, Tokyo 1838508, Japan
关键词
D O I
10.1088/0022-3727/40/21/R01
中图分类号
O59 [应用物理学];
学科分类号
摘要
A magnetic tunnel junction (MTJ), which consists of a thin insulating layer (a tunnel barrier) sandwiched between two ferromagnetic electrode layers, exhibits tunnel magnetoresistance (TMR) due to spin-dependent electron tunnelling. Since the 1995 discovery of room-temperature TMR, MTJs with an amorphous aluminium oxide (Al-O) tunnel barrier have been studied extensively. Al-O-based MTJs exhibit magnetoresistance (MR) ratios up to about 70% at room temperature (RT) and are currently used in magnetoresistive random access memory (MRAM) and the read heads of hard disk drives. MTJs with MR ratios significantly higher than 70% at RT, however, are needed for next-generation spintronic devices. In 2001 first-principle theories predicted that the MR ratios of epitaxial Fe/MgO/Fe MTJs with a crystalline MgO(001) barrier would be over 1000% because of the coherent tunnelling of fully spin-polarized Delta(1) electrons. In 2004 MR ratios of about 200% were obtained in MTJs with a single-crystal MgO(001) barrier or a textured MgO(001) barrier. CoFeB/MgO/CoFeB MTJs for practical applications were also developed and found to have MR ratios up to 500% at RT. MgO-based MTJs are of great importance not only for device applications but also for clarifying the physics of spin-dependent tunnelling. In this article we introduce recent studies on physics and applications of the giant TMR in MgO-based MTJs.
引用
收藏
页码:R337 / R354
页数:18
相关论文
共 60 条
[1]   Spin-dependent tunneling spectroscopy in single-crystal Fe/MgO/Fe tunnel junctions [J].
Ando, Y ;
Miyakoshi, T ;
Oogane, M ;
Miyazaki, T ;
Kubota, H ;
Ando, K ;
Yuasa, S .
APPLIED PHYSICS LETTERS, 2005, 87 (14) :1-3
[2]   Magnon-assisted inelastic excitation spectra of a ferromagnetic tunnel junction [J].
Ando, Y ;
Murai, J ;
Kubota, H ;
Miyazaki, T .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) :5209-5211
[3]   BAND-STRUCTURE OF BCC COBALT [J].
BAGAYOKO, D ;
ZIEGLER, A ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1983, 27 (12) :7046-7049
[4]   GIANT MAGNETORESISTANCE OF (001)FE/(001) CR MAGNETIC SUPERLATTICES [J].
BAIBICH, MN ;
BROTO, JM ;
FERT, A ;
VANDAU, FN ;
PETROFF, F ;
EITENNE, P ;
CREUZET, G ;
FRIEDERICH, A ;
CHAZELAS, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (21) :2472-2475
[5]   ENHANCED MAGNETORESISTANCE IN LAYERED MAGNETIC-STRUCTURES WITH ANTIFERROMAGNETIC INTERLAYER EXCHANGE [J].
BINASCH, G ;
GRUNBERG, P ;
SAURENBACH, F ;
ZINN, W .
PHYSICAL REVIEW B, 1989, 39 (07) :4828-4830
[6]   Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments [J].
Bowen, M ;
Bibes, M ;
Barthélémy, A ;
Contour, JP ;
Anane, A ;
Lemaitre, Y ;
Fert, A .
APPLIED PHYSICS LETTERS, 2003, 82 (02) :233-235
[7]   Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001) [J].
Bowen, M ;
Cros, V ;
Petroff, F ;
Fert, A ;
Boubeta, CM ;
Costa-Krämer, JL ;
Anguita, JV ;
Cebollada, A ;
Briones, F ;
de Teresa, JM ;
Morellón, L ;
Ibarra, MR ;
Güell, F ;
Peiró, F ;
Cornet, A .
APPLIED PHYSICS LETTERS, 2001, 79 (11) :1655-1657
[8]   THEORY OF INTERLAYER MAGNETIC COUPLING [J].
BRUNO, P .
PHYSICAL REVIEW B, 1995, 52 (01) :411-439
[9]   Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches -: art. no. 054416 [J].
Butler, WH ;
Zhang, XG ;
Schulthess, TC ;
MacLaren, JM .
PHYSICAL REVIEW B, 2001, 63 (05)
[10]   Effect of Ta getter on the quality of MgO tunnel barrier in the polycrystalline CoFeB/MgO/CoFeB magnetic tunnel junction [J].
Choi, Y. S. ;
Nagamine, Y. ;
Tsunekawa, K. ;
Maehara, H. ;
Djayaprawira, D. D. ;
Yuasa, S. ;
Ando, K. .
APPLIED PHYSICS LETTERS, 2007, 90 (01)