Estimating nonlinear interdependences in dynamical systems using cellular nonlinear networks

被引:19
作者
Krug, Dieter [1 ,2 ]
Osterhage, Hannes [1 ,2 ]
Elger, Christian E. [1 ]
Lehnertz, Klaus [1 ,2 ,3 ]
机构
[1] Univ Bonn, Dept Epileptol, D-53105 Bonn, Germany
[2] Univ Bonn, Helmholtz Inst Radiat & Nucl Phys, D-53115 Bonn, Germany
[3] Univ Bonn, Interdisciplinary Ctr Complex Syst, D-53117 Bonn, Germany
关键词
D O I
10.1103/PhysRevE.76.041916
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a method for estimating nonlinear interdependences between time series using cellular nonlinear networks. Our approach is based on the nonlinear dynamics of interacting nonlinear elements. We apply it to time series of coupled nonlinear model systems and to electroencephalographic time series from an epilepsy patient, and we show that an accurate approximation of symmetric and asymmetric realizations of a nonlinear interdependence measure can be achieved, thus allowing one to detect the strength and direction of couplings.
引用
收藏
页数:7
相关论文
共 61 条
  • [11] CELLULAR NEURAL NETWORKS - THEORY
    CHUA, LO
    YANG, L
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10): : 1257 - 1272
  • [12] Automated generation of new knowledge to support managerial decision-making: case study in forecasting a stock market
    Chun, SH
    Kim, SH
    [J]. EXPERT SYSTEMS, 2004, 21 (04) : 192 - 207
  • [13] Ciszak M, 2005, PHYS REV E, V72, DOI [10.1103/PhysRevE.72.046218, 10.1103/PhysRevE.046218]
  • [14] Egan JP., 1975, Signal Detection Theory and ROC Analysis
  • [15] GENERATION AND PREDICTION OF TIME-SERIES BY A NEURAL-NETWORK
    EISENSTEIN, E
    KANTER, I
    KESSLER, DA
    KINZEL, W
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (01) : 6 - 9
  • [16] Espejo S, 1996, INT J CIRC THEOR APP, V24, P93, DOI 10.1002/(SICI)1097-007X(199601/02)24:1<93::AID-CTA906>3.0.CO
  • [17] 2-M
  • [18] On-chip-training for cellular neural networks using iterative annealing
    Feiden, D
    Tetzlaff, R
    [J]. VLSI CIRCUITS AND SYSTEMS, 2003, 5117 : 470 - 477
  • [19] Learning and predicting time series by neural networks
    Freking, Ansgar
    Kinzel, Wolfgang
    Kanter, Ido
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (05): : 1 - 050903
  • [20] STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS
    FUJISAKA, H
    YAMADA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01): : 32 - 47