Coloring the square of a K4-minor free graph

被引:61
作者
Lih, KW
Wang, WF
Zhu, XD
机构
[1] Acad Sinica, Inst Math, Taipei 115, Taiwan
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[3] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
关键词
series-parallel graph; K-4-minor free graph; square; chromatic number;
D O I
10.1016/S0012-365X(03)00059-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a K-4-minor free graph with maximum degree Delta. We prove that the chromatic number of the square of G is at most (i) Delta + 3 if 2 less than or equal to Delta less than or equal to 3; or (ii) [3Delta/2] + 1 if Delta greater than or equal to 4. Examples are given to show the bounds can be attained. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:303 / 309
页数:7
相关论文
共 9 条
[1]  
AGNARSSON G, 2000, UNPUB SIAM J DISCRET
[2]  
BORODIN OV, 2001, ANAL ISSLED OPER 1, V8, P9
[3]  
CHARTRAND G, 1967, ANN I H POINCARE B, V3, P433
[4]   TOPOLOGY OF SERIES-PARALLEL NETWORKS [J].
DUFFIN, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 10 (02) :303-&
[5]  
MOLLOY M, 2002, BOUND CHROMATIC NUMB
[6]  
Thomassen C, 2001, APPL TUTTE CYCLES
[7]   Coloring the square of a planar graph [J].
van den Heuvel, J ;
McGuinness, S .
JOURNAL OF GRAPH THEORY, 2003, 42 (02) :110-124
[8]  
WANG WF, IN PRESS SIAM J DISC
[9]  
Wegner G, 1977, Graphs with given diameter and a coloring problem