Measurement of geometric phase for mixed states using single photon interferometry

被引:80
作者
Ericsson, M [1 ]
Achilles, D [1 ]
Barreiro, JT [1 ]
Branning, D [1 ]
Peters, NA [1 ]
Kwiat, PG [1 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.94.050401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Geometric phase may enable inherently fault-tolerant quantum computation. However, due to potential decoherence effects, it is important to understand how such phases arise for mixed input states. We report the first experiment to measure mixed-state geometric phases in optics, using a Mach-Zehnder interferometer, and polarization mixed states that are produced in two different ways: decohering pure states with birefringent elements; and producing a nonmaximally entangled state of two photons and tracing over one of them, a form of remote state preparation.
引用
收藏
页数:4
相关论文
共 25 条
[1]   Remote state preparation [J].
Bennett, CH ;
DiVincenzo, DP ;
Shor, PW ;
Smolin, JA ;
Terhal, BM ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 2001, 87 (07) :77902-1
[2]  
BERGLUND AJ, 2003, QUANTUM INF COMPUT, V3, P503
[4]   GEOMETRIC PHASES IN 2-PHOTON INTERFERENCE EXPERIMENTS [J].
BRENDEL, J ;
DULTZ, W ;
MARTIENSSEN, W .
PHYSICAL REVIEW A, 1995, 52 (04) :2551-2556
[5]   Observation of geometric phases for mixed states using NMR interferometry [J].
Du, JF ;
Zou, P ;
Shi, MJ ;
Kwek, LC ;
Pan, JW ;
Oh, CH ;
Ekert, A ;
Oi, DKL ;
Ericsson, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (10)
[6]   Geometric manipulation of trapped ions for quantum computation [J].
Duan, LM ;
Cirac, JI ;
Zoller, P .
SCIENCE, 2001, 292 (5522) :1695-1697
[7]   Mixed state geometric phases, entangled systems, and local unitary transformations -: art. no. 090405 [J].
Ericsson, M ;
Pati, AK ;
Sjöqvist, E ;
Brännlund, J ;
Oi, DKL .
PHYSICAL REVIEW LETTERS, 2003, 91 (09) :904051-904054
[8]   Geometric quantum computation using nuclear magnetic resonance [J].
Jones, JA ;
Vedral, V ;
Ekert, A ;
Castagnoli, G .
NATURE, 2000, 403 (6772) :869-871
[9]   A scheme for efficient quantum computation with linear optics [J].
Knill, E ;
Laflamme, R ;
Milburn, GJ .
NATURE, 2001, 409 (6816) :46-52
[10]  
Kwiat P.G., 2004, Science and Ultimate Reality: Quantum Theory, Cosmology and Complexity