On a prey-predator reaction-diffusion system with Holling type III functional response

被引:22
作者
Apreutesei, Narcisa [2 ]
Dimitriu, Gabriel [1 ]
机构
[1] Gr T Popa Univ Med & Pharm, Dept Math & Informat, Iasi 700115, Romania
[2] Tech Univ Gh Asachi, Dept Math, Iasi 700506, Romania
关键词
MODEL;
D O I
10.1016/j.cam.2010.05.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a prey-predator model defined by an initial-boundary value problem whose dynamics is described by a Holling type III functional response We establish global existence and uniqueness of the strong solution. We prove that lithe initial data are positive and satisfy a certain regularity condition, the solution of the problem is positive and bounded on the domain Q = (0, T) x Omega and then we deduce the continuous dependence on the initial data. A numerical approximation of the system is carried out with a spectral method coupled with the fourth-order Runge-Kutta time solver. The biological relevance of the comparative numerical results is also presented. (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:366 / 379
页数:14
相关论文
共 27 条
[1]  
[Anonymous], 2000, SIAM
[2]  
[Anonymous], 2002, Mathematical biology, Interdisciplinary applied mathematics
[3]  
Barbu V., 1994, MATH METHODS OPTIMIZ
[4]  
Brauer F., 2000, Mathematical Models in Population Biology and Epidemiology
[5]   Exponential time differencing for stiff systems [J].
Cox, SM ;
Matthews, PC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 176 (02) :430-455
[6]  
CRASTER RV, 2006, SPECTRAL ALGORITHMS, P99
[7]   A diffusive predator-prey model with a protection zone [J].
Du, Yihong ;
Shi, Junping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (01) :63-91
[8]   Finite element approximation of spatially extended predator-prey interactions with the Holling type II functional response [J].
Garvie, Marcus R. ;
Trenchea, Catalin .
NUMERISCHE MATHEMATIK, 2007, 107 (04) :641-667
[9]   Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB [J].
Garvie, Marcus R. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (03) :931-956
[10]  
Gaucel S, 2007, DISCRETE CONT DYN-B, V8, P61