Comparing N-mixture models and GLMMs for relative abundance estimation in a citizen science dataset

被引:20
作者
Goldstein, Benjamin R. [1 ]
de Valpine, Perry [1 ]
机构
[1] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
EBIRD; BIODIVERSITY;
D O I
10.1038/s41598-022-16368-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To analyze species count data when detection is imperfect, ecologists need models to estimate relative abundance in the presence of unknown sources of heterogeneity. Two candidate models are generalized linear mixed models (GLMMs) and hierarchical N-mixture models. GLMMs are computationally robust but do not explicitly separate detection from abundance patterns. N-mixture models separately estimate detection and abundance via a latent state but are sensitive to violations in assumptions and subject to practical estimation issues. When one can assume that detection is not systematically confounded with ecological patterns of interest, these two models can be viewed as sharing a heuristic framework for relative abundance estimation. Model selection can then determine which predicts observed counts best, for example by AIC. We compared four N-mixture model variants and two GLMM variants for predicting bird counts in local subsets of a citizen science dataset, eBird, based on model selection and goodness-of-fit measures. We found that both GLMMs and N-mixture models-especially N-mixtures with beta-binomial detection submodels-were supported in a moderate number of datasets, suggesting that both tools are useful and that relative fit is context-dependent. We provide faster software implementations of N-mixture likelihood calculations and a reparameterization to interpret unstable estimates for N-mixture models.
引用
收藏
页数:12
相关论文
共 44 条
[1]  
Auer T., 2020, EBIRDST TOOLS LOADIN, DOI DOI 10.5281/ZENODO.3620739
[2]   On the reliability of N-mixture models for count data [J].
Barker, Richard J. ;
Schofield, Matthew R. ;
Link, William A. ;
Sauer, John R. .
BIOMETRICS, 2018, 74 (01) :369-377
[3]   Generalized linear mixed models: a practical guide for ecology and evolution [J].
Bolker, Benjamin M. ;
Brooks, Mollie E. ;
Clark, Connie J. ;
Geange, Shane W. ;
Poulsen, John R. ;
Stevens, M. Henry H. ;
White, Jada-Simone S. .
TRENDS IN ECOLOGY & EVOLUTION, 2009, 24 (03) :127-135
[4]   Field evaluation of abundance estimates under binomial and multinomial N-mixture models [J].
Botsch, Yves ;
Jenni, Lukas ;
Kery, Marc .
IBIS, 2020, 162 (03) :902-910
[5]   glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling [J].
Brooks, Mollie E. ;
Kristensen, Kasper ;
van Benthem, Koen J. ;
Magnusson, Arni ;
Berg, Casper W. ;
Nielsen, Anders ;
Skaug, Hans J. ;
Machler, Martin ;
Bolker, Benjamin M. .
R JOURNAL, 2017, 9 (02) :378-400
[6]  
Burnham KP, 2007, MODEL SELECTION MULT, DOI 10.1007/978-0-387-22456-5_2
[7]   Contribution of citizen science towards international biodiversity monitoring [J].
Chandler, Mark ;
See, Linda ;
Copas, Kyle ;
Bonde, Astrid M. Z. ;
Lopez, Bernat Claramunt ;
Danielsen, Finn ;
Legind, Jan Kristoffer ;
Masinde, Siro ;
Miller-Rushing, Abraham J. ;
Newman, Greg ;
Rosemartin, Alyssa ;
Turak, Eren .
BIOLOGICAL CONSERVATION, 2017, 213 :280-294
[8]   Assessment and novel application of N-mixture models for aerial surveys of wildlife [J].
Christensen, Sonja A. ;
Farr, Matthew T. ;
Williams, David M. .
ECOSPHERE, 2021, 12 (08)
[9]   Avian responses to extreme weather across functional traits and temporal scales [J].
Cohen, Jeremy M. ;
Fink, Daniel ;
Zuckerberg, Benjamin .
GLOBAL CHANGE BIOLOGY, 2020, 26 (08) :4240-4250
[10]   Reliability of multinomial N-mixture models for estimating abundance of small terrestrial vertebrates [J].
Costa, Andrea ;
Romano, Antonio ;
Salvidio, Sebastiano .
BIODIVERSITY AND CONSERVATION, 2020, 29 (9-10) :2951-2965