Hermite-Hadamard-Fejer type inequalities via fractional integral of a function concerning another function

被引:12
|
作者
Baleanu, Dumitru [1 ,2 ,3 ]
Samraiz, Muhammad [4 ]
Perveen, Zahida [4 ]
Iqbal, Sajid [5 ]
Nisar, Kottakkaran Sooppy [6 ]
Rahman, Gauhar [7 ]
机构
[1] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[2] Inst Space Sci, Magurele 077125, Romania
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40250, Taiwan
[4] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
[5] Riphah Int Univ, Dept Math, Faisalabad Campus,Satyana Rd, Faisalabad 38000, Pakistan
[6] Prince Sattam bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
[7] Hazara Univ Mansehra, Dept Math & Stat 5, Dhodial, Pakistan
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 05期
关键词
Hermite-Hadamard-Fejer inequalities; convex function; generalized fractional integral; mid-point inequality; Riemann-Liouville; CONVEX-FUNCTIONS;
D O I
10.3934/math.2021253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we at first develop a generalized integral identity by associating RiemannLiouville (RL) fractional integral of a function concerning another function. By using this identity estimates for various convexities are accomplish which are fractional integral inequalities. From our results, we obtained bounds of known fractional results which are discussed in detail. As applications of the derived results, we obtain the mid-point-type inequalities. These outcomes might be helpful in the investigation of the uniqueness of partial differential equations and fractional boundary value problems.
引用
收藏
页码:4280 / 4295
页数:16
相关论文
共 50 条
  • [1] On Refinements of Hermite-Hadamard-Fejer Type Inequalities for Fractional Integral Operators
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2018, 13 (01): : 426 - 442
  • [2] New Refinements of the Inequalities of Hermite-Hadamard-Fejer Type via Fractional Integral Operators
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    Yildirim, Huseyin
    1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018), 2018, 1991
  • [3] Hermite-Hadamard and Hermite-Hadamard-Fejer Type Inequalities Involving Fractional Integral Operators
    Set, Erhan
    Akdemir, Ahmet Ocak
    Alan, Emrullah Aykan
    FILOMAT, 2019, 33 (08) : 2367 - 2380
  • [4] Hermite-Hadamard-Fejer type inequalities involving generalized fractional integral operators
    Set, Erhan
    Choi, Junesang
    Alan, E. Aykan
    JOURNAL OF ANALYSIS, 2019, 27 (04): : 1007 - 1027
  • [5] Hermite-Hadamard-Fejer Type Inequalities for s-Convex Function in the Second Sense via Fractional Integrals
    Set, Erhan
    Iscan, Imdat
    Kara, Hasan Huseyin
    FILOMAT, 2016, 30 (12) : 3131 - 3138
  • [6] Some inequalities associated with the Hermite-Hadamard-Fejer type for convex function
    Sarikaya, Mehmet Zeki
    Yaldiz, Hatice
    Erden, Samet
    MATHEMATICAL SCIENCES, 2014, 8 (04) : 117 - 124
  • [7] Hermite-Hadamard-Fejer type inequalities
    Yaldiz, Hatice
    Sarikaya, Mehmet Zeki
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (7-8) : 1547 - 1561
  • [8] Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals
    Iscan, Imdat
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (03): : 355 - 366
  • [9] Hermite-Hadamard-Fejer type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function
    Latif, Muhammad Amer
    Kalsoom, Humaira
    Khan, Zareen A.
    AIMS MATHEMATICS, 2022, 7 (03): : 4176 - 4198
  • [10] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals
    Chen, Hua
    Katugampola, Udita N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1274 - 1291