Transcriptome dynamics of Camellia sinensis in response to continuous salinity and drought stress

被引:85
作者
Zhang, Qing [1 ,2 ]
Cai, Muchen [3 ]
Yu, Xiaomin [1 ,4 ]
Wang, Lishan [5 ]
Guo, Chunfang [6 ]
Ming, Ray [1 ,7 ]
Zhang, Jisen [1 ,5 ,8 ]
机构
[1] Fujian Agr & Forestry Univ, HIST, Fujian Prov Key Lab Haixia Appl Plant Syst Biol, Ctr Genom & Biotechnol, Fuzhou 350002, Fujian, Peoples R China
[2] Fujian Agr & Forestry Univ, Coll Life Sci, Fuzhou 350002, Fujian, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Plant protect, Fuzhou 350002, Fujian, Peoples R China
[4] Fujian Agr & Forestry Univ, Haixia Inst Sci & Technol, Hort Biol & Metabol Ctr, Fuzhou 350002, Fujian, Peoples R China
[5] Fujian Normal Univ, Coll Life Sci, Fuzhou 350117, Fujian, Peoples R China
[6] Fujian Inst Educ, Fuzhou 350001, Fujian, Peoples R China
[7] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA
[8] Fujian Agr & Forestry Univ, Minist Educ, Key Lab Genet Breeding & Multiple Utilizat Crops, Fuzhou 350001, Fujian, Peoples R China
关键词
Camellia sinensis; Salinity stress; Drought stress; Transcriptome dynamics; Differentially expressed genes (DEGs); ABIOTIC STRESS; GENE-EXPRESSION; MOLECULAR RESPONSES; SIGNAL-TRANSDUCTION; TEMPERATURE STRESS; TOLERANCE; SALT; COLD; TEA; DEHYDRATION;
D O I
10.1007/s11295-017-1161-9
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Camellia sinensis is an important economic crop worldwide since this plant is used to make one of the most popular non-alcoholic beverages, tea. Salinity together with drought pose a serious threat to the production and qualities of C. sinensis. However, the transcriptome dynamics occurring in response to drought stress and salt stress in tea plants are poorly understood at the molecular level. We reported the first large-coverage transcriptome datasets for C. sinensis under drought and salt stress using next-generation sequencing technology. Using a high-throughput Illumina sequencing platform, approximately 398.95 million high-quality paired-end reads were generated from young leaves of C. sinensis subjected to drought stress and salt stress, and these reads were used for de novo assembly. The transcripts with further processing and filtering yielded a set of 64,905 coding DNA sequences (CDSs) with an average length of 710 bp and an N50 of 933 bp. In total, 3936 and 3715 differentially expressed genes (DEGs) were identified from all analyzed time points of drought stress and salt stress, respectively. Identified in drought and salt stress were 2131 overlapping DEGs, and these are involved in galactosyltransferase activity, tetrapyrrole binding, and hydrolase activity, indicating that C. sinensis has a similar molecular response to these two stresses. We clustered the above DEGs from both sets into four clusters according to their expression dynamics, with the genes in each cluster showing enrichment for particular functional categories. We also found that under salt stress, most DEGs showed down-regulation at early time points and their expression levels were elevated after 48 h, whereas under drought stress most DEGs were down-regulated in all time points. The DEGs relative to pathways of osmotic product such as proline, sugar, and GABA were identified in C. sinensis. Noteworthy, among the identified DEGs are genes involved in the biosynthetic pathways of polyphenol and caffeine, providing evidence at the molecular level that salt and drought affect tea qualities. In addition, we analyzed the differential expression of transcription factors and revealed a large amount of crosstalk between the metabolic pathways of drought and salt stress. All findings suggest that gene expression exhibits rapid and coordinated changes during C. sinensis adaptations to drought stress and salt stress, and common themes in the response to both stresses were identified.
引用
收藏
页数:17
相关论文
共 77 条
  • [21] Pfam: the protein families database
    Finn, Robert D.
    Bateman, Alex
    Clements, Jody
    Coggill, Penelope
    Eberhardt, Ruth Y.
    Eddy, Sean R.
    Heger, Andreas
    Hetherington, Kirstie
    Holm, Liisa
    Mistry, Jaina
    Sonnhammer, Erik L. L.
    Tate, John
    Punta, Marco
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) : D222 - D230
  • [22] Full-length transcriptome assembly from RNA-Seq data without a reference genome
    Grabherr, Manfred G.
    Haas, Brian J.
    Yassour, Moran
    Levin, Joshua Z.
    Thompson, Dawn A.
    Amit, Ido
    Adiconis, Xian
    Fan, Lin
    Raychowdhury, Raktima
    Zeng, Qiandong
    Chen, Zehua
    Mauceli, Evan
    Hacohen, Nir
    Gnirke, Andreas
    Rhind, Nicholas
    di Palma, Federica
    Birren, Bruce W.
    Nusbaum, Chad
    Lindblad-Toh, Kerstin
    Friedman, Nir
    Regev, Aviv
    [J]. NATURE BIOTECHNOLOGY, 2011, 29 (07) : 644 - U130
  • [23] De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis
    Haas, Brian J.
    Papanicolaou, Alexie
    Yassour, Moran
    Grabherr, Manfred
    Blood, Philip D.
    Bowden, Joshua
    Couger, Matthew Brian
    Eccles, David
    Li, Bo
    Lieber, Matthias
    MacManes, Matthew D.
    Ott, Michael
    Orvis, Joshua
    Pochet, Nathalie
    Strozzi, Francesco
    Weeks, Nathan
    Westerman, Rick
    William, Thomas
    Dewey, Colin N.
    Henschel, Robert
    Leduc, Richard D.
    Friedman, Nir
    Regev, Aviv
    [J]. NATURE PROTOCOLS, 2013, 8 (08) : 1494 - 1512
  • [24] Plant cellular and molecular responses to high salinity
    Hasegawa, PM
    Bressan, RA
    Zhu, JK
    Bohnert, HJ
    [J]. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 2000, 51 : 463 - 499
  • [25] Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities
    Hoque, Md. Anamul
    Okuma, Eiji
    Banu, Mst. Nasrin Akhter
    Nakamura, Yoshimasa
    Shimoishi, Yasuaki
    Murata, Yoshiyuki
    [J]. JOURNAL OF PLANT PHYSIOLOGY, 2007, 164 (05) : 553 - 561
  • [26] Products of proline catabolism can induce osmotically regulated genes in rice
    Iyer, S
    Caplan, A
    [J]. PLANT PHYSIOLOGY, 1998, 116 (01) : 203 - 211
  • [27] Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance
    Jaglo-Ottosen, KR
    Gilmour, SJ
    Zarka, DG
    Schabenberger, O
    Thomashow, MF
    [J]. SCIENCE, 1998, 280 (5360) : 104 - 106
  • [28] The KEGG resource for deciphering the genome
    Kanehisa, M
    Goto, S
    Kawashima, S
    Okuno, Y
    Hattori, M
    [J]. NUCLEIC ACIDS RESEARCH, 2004, 32 : D277 - D280
  • [29] A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism
    Kempa, Stefan
    Krasensky, Julia
    Dal Santo, Silvia
    Kopka, Joachim
    Jonak, Claudia
    [J]. PLOS ONE, 2008, 3 (12):
  • [30] Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks
    Krasensky, Julia
    Jonak, Claudia
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (04) : 1593 - 1608