Salient Object Detection using Concavity Context

被引:0
作者
Lu, Yao [1 ]
Zhang, Wei [1 ]
Lu, Hong [1 ]
Xue, Xiangyang [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
来源
2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV) | 2011年
关键词
VISUAL-ATTENTION; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convexity (concavity) is a bottom-up cue to assign figure-ground relation in the perceptual organization [18]. It suggests that region on the convex side of a curved boundary tend to be figural. To explore the validity of this cue in the task of salient object detection, we segment the images in a test dataset into superpixels, and then locate the concave arcs and their bounding boxes along boundary of superpixels. Ecological statistics indicate that such bounding box contains salient object with a large probability. To utilize this spatial context information, i.e. concavity context, we follow the multi-scale analysis of human visual perception and design a hierarchical model. The model yields an affinity graph over candidate superpixels, in which weights between vertices are determined by the summation of concavity context on different scales in the hierarchy. Finally a graph-cut algorithm is performed to separate the salient and background objects. Evaluation on MSRA Salient Object Detection (SOD) dataset shows that concavity context is effective, and our approach provides improvement over state-of-the-art feature-based algorithms.
引用
收藏
页码:233 / 240
页数:8
相关论文
共 50 条
[41]   Motion Context guided Edge-preserving network for video salient object detection [J].
Huang, Kan ;
Tian, Chunwei ;
Xu, Zhijing ;
Li, Nannan ;
Lin, Jerry Chun-Wei .
EXPERT SYSTEMS WITH APPLICATIONS, 2023, 233
[42]   CANet: Context-aware Aggregation Network for Salient Object Detection of Surface Defects* [J].
Wan, Bin ;
Zhou, Xiaofei ;
Zhu, Bin ;
Xiao, Mang ;
Sun, Yaoqi ;
Zheng, Bolun ;
Zhang, Jiyong ;
Yan, Chenggang .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 93
[43]   Super Diffusion for Salient Object Detection [J].
Jiang, Peng ;
Pan, Zhiyi ;
Tu, Changhe ;
Vasconcelos, Nuno ;
Chen, Baoquan ;
Peng, Jingliang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :2903-2917
[44]   Oscillation analysis for salient object detection [J].
Liu, Yang ;
Li, Xueqing ;
Wang, Lei ;
Niu, Yuzhen ;
Liu, Feng .
MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 68 (03) :659-679
[45]   Salient Region Detection for Object Tracking [J].
Chan, Fan ;
Jiang, Min ;
Tang, Jinshan .
MOBILE MULTIMEDIA/IMAGE PROCESSING, SECURITY, AND APPLICATIONS 2012, 2012, 8406
[46]   Salient Object Detection in Video Streams [J].
Tapu, Ruxandra ;
Mocanu, Bogdan ;
Tapu, Ermina .
2012 10TH INTERNATIONAL SYMPOSIUM ON ELECTRONICS AND TELECOMMUNICATIONS, 2012, :275-278
[47]   A Universal Framework for Salient Object Detection [J].
Lei, Jianjun ;
Wang, Bingren ;
Fang, Yuming ;
Lin, Weisi ;
Le Callet, Patrick ;
Ling, Nam ;
Hou, Chunping .
IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (09) :1783-1795
[48]   Salient Object Detection in Noisy Images [J].
Kumar, Nitin ;
Singh, Maheep ;
Govil, M. C. ;
Pilli, E. S. ;
Jaiswal, Ajay .
ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2016, 2016, 9673 :109-114
[49]   Salient object detection: a mini review [J].
Wang, Xiuwenxin ;
Yu, Siyue ;
Lim, Eng Gee ;
Wong, M. L. Dennis .
FRONTIERS IN SIGNAL PROCESSING, 2024, 4
[50]   Objectness to assist salient object detection [J].
Sun, Xiaoliang ;
Su, Ang ;
Chen, Shengyi ;
Yu, Qifeng ;
Liu, Xiaolin .
IET IMAGE PROCESSING, 2016, 10 (05) :391-397