Salient Object Detection using Concavity Context

被引:0
作者
Lu, Yao [1 ]
Zhang, Wei [1 ]
Lu, Hong [1 ]
Xue, Xiangyang [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
来源
2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV) | 2011年
关键词
VISUAL-ATTENTION; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convexity (concavity) is a bottom-up cue to assign figure-ground relation in the perceptual organization [18]. It suggests that region on the convex side of a curved boundary tend to be figural. To explore the validity of this cue in the task of salient object detection, we segment the images in a test dataset into superpixels, and then locate the concave arcs and their bounding boxes along boundary of superpixels. Ecological statistics indicate that such bounding box contains salient object with a large probability. To utilize this spatial context information, i.e. concavity context, we follow the multi-scale analysis of human visual perception and design a hierarchical model. The model yields an affinity graph over candidate superpixels, in which weights between vertices are determined by the summation of concavity context on different scales in the hierarchy. Finally a graph-cut algorithm is performed to separate the salient and background objects. Evaluation on MSRA Salient Object Detection (SOD) dataset shows that concavity context is effective, and our approach provides improvement over state-of-the-art feature-based algorithms.
引用
收藏
页码:233 / 240
页数:8
相关论文
共 50 条
[21]   SCFANet: Semantics and Context Feature Aggregation Network for 360° Salient Object Detection [J].
He, Zhentao ;
Shao, Feng ;
Chen, Gang ;
Chai, Xiongli ;
Ho, Yo-Sung .
IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 :2276-2288
[22]   A hybrid approach using color spatial variance and novel object position prior for salient object detection [J].
Singh, Vivek Kumar ;
Kumar, Nitin ;
Singh, Navjot .
MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (39-40) :30045-30067
[23]   Employing Deep Part-Object Relationships for Salient Object Detection [J].
Liu, Yi ;
Zhang, Qiang ;
Zhang, Dingwen ;
Han, Jungong .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :1232-1241
[24]   Salient object detection using feature clustering and compactness prior [J].
Zhang, Yanbang ;
Zhang, Fen ;
Guo, Lei ;
Han, Henry .
MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (16) :24867-24884
[25]   Salient object detection using coarse-to-fine processing [J].
Zhou, Qiangqiang ;
Zhang, Lin ;
Zhao, Weidong ;
Liu, Xianhui ;
Chen, Yufei ;
Wang, Zhicheng .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2017, 34 (03) :370-383
[26]   Salient object detection using recursive regional feature clustering [J].
Oh, Kanghan ;
Lee, Myungeun ;
Lee, Yura ;
Kirna, Soohyung .
INFORMATION SCIENCES, 2017, 387 :1-18
[27]   FGNet: Fixation guidance network for salient object detection [J].
Yuan, Junbin ;
Xiao, Lifang ;
Wattanachote, Kanoksak ;
Xu, Qingzhen ;
Luo, Xiaonan ;
Gong, Yongyi .
NEURAL COMPUTING & APPLICATIONS, 2023, 36 (2) :569-584
[28]   Exploiting color name space for salient object detection [J].
Lou, Jing ;
Wang, Huan ;
Chen, Longtao ;
Xu, Fenglei ;
Xia, Qingyuan ;
Zhu, Wei ;
Ren, Mingwu .
MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (15-16) :10873-10897
[29]   Salient object detection via global and local cues [J].
Tong, Na ;
Lu, Huchuan ;
Zhang, Ying ;
Ruan, Xiang .
PATTERN RECOGNITION, 2015, 48 (10) :3258-3267
[30]   Salient Object Detection via Structured Matrix Decomposition [J].
Peng, Houwen ;
Li, Bing ;
Ling, Haibin ;
Hu, Weiming ;
Xiong, Weihua ;
Maybank, Stephen J. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (04) :818-832