Salient Object Detection using Concavity Context

被引:0
|
作者
Lu, Yao [1 ]
Zhang, Wei [1 ]
Lu, Hong [1 ]
Xue, Xiangyang [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
来源
2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV) | 2011年
关键词
VISUAL-ATTENTION; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convexity (concavity) is a bottom-up cue to assign figure-ground relation in the perceptual organization [18]. It suggests that region on the convex side of a curved boundary tend to be figural. To explore the validity of this cue in the task of salient object detection, we segment the images in a test dataset into superpixels, and then locate the concave arcs and their bounding boxes along boundary of superpixels. Ecological statistics indicate that such bounding box contains salient object with a large probability. To utilize this spatial context information, i.e. concavity context, we follow the multi-scale analysis of human visual perception and design a hierarchical model. The model yields an affinity graph over candidate superpixels, in which weights between vertices are determined by the summation of concavity context on different scales in the hierarchy. Finally a graph-cut algorithm is performed to separate the salient and background objects. Evaluation on MSRA Salient Object Detection (SOD) dataset shows that concavity context is effective, and our approach provides improvement over state-of-the-art feature-based algorithms.
引用
收藏
页码:233 / 240
页数:8
相关论文
共 50 条
  • [1] Scene Context-Aware Salient Object Detection
    Siris, Avishek
    Jiao, Jianbo
    Tam, Gary K. L.
    Xie, Xianghua
    Lau, Rynson W. H.
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4136 - 4146
  • [2] SALIENT OBJECT DETECTION USING OCTONION WITH BAYESIAN INFERENCE
    Gao, Hong-Yun
    Lam, Kin-Man
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3292 - 3296
  • [3] Salient object detection: A survey
    Borji, Ali
    Cheng, Ming-Ming
    Hou, Qibin
    Jiang, Huaizu
    Li, Jia
    COMPUTATIONAL VISUAL MEDIA, 2019, 5 (02) : 117 - 150
  • [4] Salient Object Detection: A Benchmark
    Borji, Ali
    Cheng, Ming-Ming
    Jiang, Huaizu
    Li, Jia
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 5706 - 5722
  • [5] SALIENT OBJECT DETECTION USING BIPARTITE DICTIONARY
    Seo, Yuna
    Lee, Donghoon
    Yoo, Chang D.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1145 - 1149
  • [6] Thresholding in salient object detection: a survey
    Kumar, Nitin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (15) : 19139 - 19170
  • [7] Salient object detection of social images based on semantic tag context
    Liang, Ye
    Lang, Congyan
    Yu, Jian
    Liu, Hongzhe
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2017, 23 (04) : 233 - 247
  • [8] SAC-Net: Spatial Attenuation Context for Salient Object Detection
    Hu, Xiaowei
    Fu, Chi-Wing
    Zhu, Lei
    Wang, Tianyu
    Heng, Pheng-Ann
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (03) : 1079 - 1090
  • [9] Spatiotemporal context-aware network for video salient object detection
    Chen, Tianyou
    Xiao, Jin
    Hu, Xiaoguang
    Zhang, Guofeng
    Wang, Shaojie
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (19) : 16861 - 16877
  • [10] Salient object detection method using random graph
    Nouri, Fatemeh
    Kazemi, Kamran
    Danyali, Habibollah
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (19) : 24681 - 24699