Size and dimension dependent vacancy formation energy of nanosolids

被引:0
作者
Xiong, Shiyun [1 ]
Qi, Weihong [1 ,2 ]
Huang, Baiyun [3 ]
Wang, Mingpu [1 ,2 ]
机构
[1] Cent South Univ Technol, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Minist Educ Changsha, Key Lab Non Ferrous Mat Sci & Engn, Changsha 410083, Peoples R China
[3] Cent South Univ Technol, State Key Lab Powder Met, Changsha 410083, Peoples R China
来源
COMPUTATIONAL MATERIALS SCIENCE, PTS 1-3 | 2011年 / 268-270卷
关键词
Nanosolids; Vacancy formation energy; Size effects; METALLIC NANOPARTICLES; TEMPERATURE;
D O I
10.4028/www.scientific.net/AMR.268-270.930
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A model for size dependent vacancy formation energy of nanosolids (nanoparticles, nanowires and nanofilms) has been developed by the consideration of their surface free energy. It is found that the vacancy formation energy of nanosolids decreases with the decrease of size. The relative variation of vacancy formation energy of nanoparticles, nanowires and nanofilms to bulk value at specified size follows 3:2:1. Furthermore, vacancy formation energy of nanosolids changes linearly with the reciprocal of size. The present results agree well with the predictions of BOLS and ECN theory.
引用
收藏
页码:930 / +
页数:2
相关论文
共 50 条
  • [41] Size-dependent dielectric function for electron-energy-loss spectra of plasmonic nanoparticles
    Huang, Kai-Jian
    Qin, Shui-Jie
    Zhang, Zheng-Ping
    Bai, Zhong-Chen
    JOURNAL OF MODERN OPTICS, 2019, 66 (20) : 2025 - 2036
  • [42] Size-dependent cohesive energy, melting temperature, and Debye temperature of spherical metallic nanoparticles
    Qu, Y. D.
    Liang, X. L.
    Kong, X. Q.
    Zhang, W. J.
    PHYSICS OF METALS AND METALLOGRAPHY, 2017, 118 (06) : 528 - 534
  • [43] Size-dependent cohesive energy, melting temperature, and Debye temperature of spherical metallic nanoparticles
    Y. D. Qu
    X. L. Liang
    X. Q. Kong
    W. J. Zhang
    Physics of Metals and Metallography, 2017, 118 : 528 - 534
  • [44] First-principles calculation of the vacancy formation energies in LiAl
    Chen, LJ
    Hou, ZF
    Zhu, ZZ
    Yang, Y
    ACTA PHYSICA SINICA, 2003, 52 (09) : 2229 - 2234
  • [45] Anisotropic O vacancy formation and diffusion in LaMnO3
    Gan, Li-Yong
    Akande, Salawu Omotayo
    Schwingenschloegl, Udo
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (46) : 19733 - 19737
  • [46] Effects of Concentration, Crystal Structure, Magnetism, and Electronic Structure Method on First-Principles Oxygen Vacancy Formation Energy Trends in Perovskites
    Curnan, Matthew T.
    Kitchin, John R.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (49) : 28776 - 28790
  • [47] Calculating the bulk vacancy formation energy (Eν) for a Schottky defect in a perfect Cu(111), Cu(100) and a Cu(110) single crystal
    Terblans, JJ
    SURFACE AND INTERFACE ANALYSIS, 2002, 33 (09) : 767 - 770
  • [48] Assessment of the thermodynamic dimension of the stacking fault energy
    Geissler, D.
    Freudenberger, J.
    Kauffmann, A.
    Martin, S.
    Rafaja, D.
    PHILOSOPHICAL MAGAZINE, 2014, 94 (26) : 2967 - 2979
  • [49] Machine learning-assisted DFT reveals key descriptors governing the vacancy formation energy in Pd-substituted multicomponent ceria
    Pentyala, Phanikumar
    Singhania, Vibhuti
    Duggineni, Vinay Kumar
    Deshpande, Parag A.
    MOLECULAR CATALYSIS, 2022, 522
  • [50] Impact of Shape, Size and Crystal Structure on Vacancy Related Properties of Gold Nanoparticles
    Goyal, Monika
    JOURNAL OF POLYMER & COMPOSITES, 2025, 13 : S223 - S229