Comment on "Defining a curve as a Bezier curve"

被引:3
作者
Sanchez-Reyes, J. [1 ]
机构
[1] UCLM, ETS Ingn Ind, IMACI, Campus Univ, Ciudad Real 13071, Spain
关键词
Bernstein basis; Bezier curve; change of basis; ill-conditioning; power basis; transformation matrix;
D O I
10.1080/16583655.2020.1780057
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In a recent article published in this journal, Baydas and Karakas show how to compute the Bezier representation of a curve given in power form. We note that this straightforward exercise, including a closed-form expression for the transformation matrix, can be found in the existing literature on CAGD.
引用
收藏
页码:849 / 850
页数:2
相关论文
共 10 条
[1]   Defining a curve as a Bezier curve [J].
Baydas, Senay ;
Karakas, Bulent .
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01) :522-528
[2]  
Bowyer A., 1993, INTRO COMPUTING GEOM
[3]  
Daniel M., 1989, Computer-Aided Geometric Design, V6, P121, DOI 10.1016/0167-8396(89)90015-0
[4]  
Farin G., 2002, CURVES SURFACES COMP
[5]  
Farouki R. T., 1991, Computer-Aided Geometric Design, V8, P29, DOI 10.1016/0167-8396(91)90047-F
[6]   ALGORITHMS FOR POLYNOMIALS IN BERNSTEIN FORM. [J].
Farouki, R.T. ;
Rajan, V.T. .
Computer Aided Geometric Design, 1988, 5 (01) :1-26
[7]   The Bernstein polynomial basis: A centennial retrospective [J].
Farouki, Rida T. .
COMPUTER AIDED GEOMETRIC DESIGN, 2012, 29 (06) :379-419
[8]  
Farouki RT., 2008, PYTHAGOREAN HODOGRAP
[9]  
Goldman R., 2003, Pyramid Algorithms : A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling
[10]  
Prautzsch H., 2002, Bezier and B-Spline Techniques