Data-driven stability analysis of switched affine systems

被引:4
作者
Della Rossa, Matteo [1 ]
Wang, Zheming [1 ]
Egidio, Lucas N. [1 ]
Jungers, Raphael M. [1 ]
机构
[1] UCLouvain, ICTEAM, 4 Av G Lemaitre, B-1348 Louvain La Neuve, Belgium
来源
2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2021年
基金
欧洲研究理事会;
关键词
INVARIANT-SETS; CONTROL DESIGN; STABILIZATION; CRITERIA;
D O I
10.1109/CDC45484.2021.9682823
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider discrete-time switching systems composed of a finite family of affine sub-dynamics. First, we recall existing results and present further analysis on the stability problem, the existence and characterization of compact attractors, and the relations these problems have with the joint spectral radius of the set of matrices composing the linear part of the subsystems. Second, we tackle the problem of providing probabilistic certificates of stability along with the existence of forward invariant sets, assuming no knowledge on the system data but only observing a finite number of sampled trajectories. Some numerical examples illustrate the advantages and limits of the proposed conditions.
引用
收藏
页码:3204 / 3209
页数:6
相关论文
共 26 条
[1]   JOINT SPECTRAL RADIUS AND PATH-COMPLETE GRAPH LYAPUNOV FUNCTIONS [J].
Ahmadi, Amir Ali ;
Jungers, Raphael M. ;
Parrilo, Pablo A. ;
Roozbehani, Mardavij .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (01) :687-717
[2]   Invariant Sets for Switching Affine Systems Subject to Semi-Algebraic Constraints [J].
Athanasopoulos, Nikolaos ;
Jungers, Raphael M. .
IFAC PAPERSONLINE, 2016, 49 (18) :158-163
[3]  
Berger G.O., 2021, 3 C LEARN DYN CONTR
[4]  
Boyd S., 1994, Linear Matrix Inequalities in System and Control Theory
[5]   RANDOM CONVEX PROGRAMS [J].
Calafiore, Giuseppe Carlo .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) :3427-3464
[6]   A General Scenario Theory for Nonconvex Optimization and Decision Making [J].
Campi, Marco Claudio ;
Garatti, Simone ;
Ramponi, Federico Alessandro .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (12) :4067-4078
[7]   Switched affine systems control design with application to DC-DC converters [J].
Deaecto, G. S. ;
Geromel, J. C. ;
Garcia, F. S. ;
Pomilio, J. A. .
IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (07) :1201-1210
[8]   Stability Analysis and Control Design of Discrete-Time Switched Affine Systems [J].
Deaecto, Grace S. ;
Geromel, Jose C. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) :4058-4065
[9]  
Della Rossa M., 2021, ARXIV210911169
[10]  
Egidio L. N., 2021, IEEE T AUTOMATIC CON