Optical signatures of electrically charged particles: Fundamental problems and solutions

被引:25
作者
Klacka, Jozef [1 ]
Kocifaj, Miroslav [1 ,2 ]
Kundracik, Frantisek [1 ]
Videen, Gorden [3 ,4 ,5 ]
机构
[1] Comenius Univ, Fac Math Phys & Informat, Bratislava 84248, Slovakia
[2] Slovak Acad Sci, ICA, Bratislava 84503, Slovakia
[3] INTA, Madrid 28850, Spain
[4] Univ Cantabria, Fac Ciencias, Dept Fis Aplicada, Grp Opt, E-39005 Santander, Spain
[5] AMSRD ARL CI ES, US Army Res Lab, Adelphi, MD 20783 USA
关键词
Electromagnetic scattering; Charged particles; Surface current density; Separation-of-variables method; ELECTROMAGNETIC-WAVES; RAYLEIGH APPROXIMATION; SCATTERING; DUST; SPHERES;
D O I
10.1016/j.jqsrt.2015.05.009
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The explicit solution to Maxwell's equations that satisfies the continuity equation is obtained for electrically charged spherical particles. The traditional separation-of-variables method (SVM) cannot be used to solve the vector wave equation for a non-uniformly charged spherical particle. In addition, a perturbation approach to the electromagnetic scattering problem fails if a spherical particle is occupied by electric charges that are not spatially homogeneous. By incorporating a correction to the conventional surface-current density, we have refined the conductivity model and found that the Rayleigh approximation (for mode n=1) is not a valid approach for modelling the optical effects by electrically charged particles much smaller than the wavelength of an incident radiation. Theoretical analyses indicate that peak enhancements of optical signatures are usually relevant in the long-wavelength limit due to the necessity to include higher-order modes of vibration (n>1). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:45 / 53
页数:9
相关论文
共 25 条
  • [1] Aluminum oxide and the opacity of oxygen-rich circumstellar dust in the 12-17 micron range
    Begemann, B
    Dorschner, J
    Henning, T
    Mutschke, H
    Gurtler, J
    Kompe, C
    Nass, R
    [J]. ASTROPHYSICAL JOURNAL, 1997, 476 (01) : 199 - 208
  • [2] Bohren C. F., 2008, Absorption and Scattering of Light by Small Particles
  • [3] SCATTERING OF ELECTROMAGNETIC-WAVES BY A CHARGED SPHERE
    BOHREN, CF
    HUNT, AJ
    [J]. CANADIAN JOURNAL OF PHYSICS, 1977, 55 (21) : 1930 - 1935
  • [4] Modeling particle scattering structure factor for branched bio-inspired polymers in solution: A small angle X-ray scattering study
    Bonaccorsi, Lucio
    Calandra, Pietro
    Proverbio, Edoardo
    Lombardo, Domenico
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2012, 113 (18) : 266 - 271
  • [5] Similarity of Scattering Rates in Metals Showing T-Linear Resistivity
    Bruin, J. A. N.
    Sakai, H.
    Perry, R. S.
    Mackenzie, A. P.
    [J]. SCIENCE, 2013, 339 (6121) : 804 - 807
  • [6] Coletti A., 1988, LIGHT SCATTERING CHA
  • [7] Millimeter-wave scattering from neutral and charged water droplets
    Heifetz, A.
    Chien, H. T.
    Liao, S.
    Gopalsami, N.
    Raptis, A. C.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2010, 111 (17-18) : 2550 - 2557
  • [8] Optical signatures of the charge of a dielectric particle in a plasma
    Heinisch, R. L.
    Bronold, F. X.
    Fehske, H.
    [J]. PHYSICAL REVIEW E, 2013, 88 (02):
  • [9] Mie Scattering by a Charged Dielectric Particle
    Heinisch, R. L.
    Bronold, F. X.
    Fehske, H.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (24)
  • [10] Henning T, 1997, ASTRON ASTROPHYS, V327, P743