Eigenvalue asymptotics of a modified Jaynes-Cummings model with periodic modulations

被引:13
作者
de Monvel, AB
Naboko, S
Silva, LO
机构
[1] Univ Paris 07, Math Inst, F-75251 Paris, France
[2] St Petersburg State Univ, Inst Phys, Dept Higher Math & Math Phys, St Petersburg 198904, Russia
[3] Univ Nacl Autonoma Mexico, IIMAS, Dept Math & Numer Methods, Mexico City 01000, DF, Mexico
关键词
D O I
10.1016/j.crma.2003.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze the influence of additive and multiplicative periodic modulations on the asymptotic behavior of eigenvalues of some Hermitian Jacobi Matrices related to the Jaynes-Cummings model using the so-called "successive diagonalization" method. This approach allows us to find, the asymptotics of the nth eigenvalue lambda(n) as n --> infinity stepwise with successively increasing precision. We bring to light the interplay of additive and multiplicative periodic modulations and their influence on the asymptotic behavior of eigenvalues. (C) 2003 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:103 / 107
页数:5
相关论文
共 7 条
[1]  
DEMONVEL AB, 2003, ASYMPTOTIC BEHAV EIG
[2]  
JANAS J, 2002, LUTFMA50172002
[3]  
KATO T., 1980, GRUNDLEHREN MATH WIS, V132
[4]   The multiquantum intensity-dependent Jaynes-Cummings model with the counterrotating terms [J].
Lo, CF ;
Liu, KL ;
Ng, KM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 265 (3-4) :557-564
[5]   Exact eigenstates of the two-photon Jaynes-Cummings model with the counter-rotating term [J].
Ng, KM ;
Lo, CF ;
Liu, KL .
EUROPEAN PHYSICAL JOURNAL D, 1999, 6 (01) :119-126
[6]  
ROZENBLJUM GV, 1979, T MOSCOW MATH SOC, V2, P57
[7]   Jaynes-Cummings model:: Solutions without rotating-wave approximation [J].
Tur, ÉA .
OPTICS AND SPECTROSCOPY, 2000, 89 (04) :574-588