Nanocellulose-based aerogel electrodes for supercapacitors: A review

被引:38
作者
Nargatti, Kiran I. [1 ]
Subhedar, Aditya R. [1 ]
Ahankari, Sandeep S. [1 ]
Grace, Andrews Nirmala [2 ]
Dufresne, Alain [3 ]
机构
[1] Vellore Inst Technol, Sch Mech Engn, Vellore 632014, Tamil Nadu, India
[2] Vellore Inst Technol, Ctr Nanotechnol Res, Vellore 632014, Tamil Nadu, India
[3] Univ Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
关键词
Supercapacitor; Nanocellulose; Aerogel; Electrodes; Energy storage; SOLID-STATE SUPERCAPACITOR; HIERARCHICAL POROUS CARBON; REDUCED GRAPHENE OXIDE; HIGH-PERFORMANCE SUPERCAPACITOR; IN-SITU GROWTH; CELLULOSE NANOFIBERS; BACTERIAL-CELLULOSE; ELECTROCHEMICAL SUPERCAPACITOR; ASYMMETRIC SUPERCAPACITOR; NANOHYBRID AEROGEL;
D O I
10.1016/j.carbpol.2022.120039
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Recently, in response to the challenges related to energy development and environmental issues, extensive efforts are being made towards the development of supercapacitors based on green and sustainable resources. Aerogel electrodes offer high energy/power autonomy, fast charge-discharge rates, and long charge/discharge cycles over composite film electrodes due to their unique structure, ultra-lightness, high porosity, and large specific surface area. Nanocellulose (NC), a sustainable nanomaterial, has gained popularity as a supercapacitor electrode material owing to its remarkable properties such as biodegradability, tunable surface chemistry, ability to develop 3D aerogel structures, etc. This comprehensive review summarizes the research progress on developing NC-based aerogels for supercapacitor applications. First, the fundamentals of NC extraction from cellulose sources and aerogel processing routes are discussed. An attempt is made to correlate the electrochemical per-formance of NC-based electrodes with their aerogel structures. Finally, challenges and future prospects for the advancement of NC-based aerogels are addressed.
引用
收藏
页数:26
相关论文
共 238 条
  • [21] Bacterial-Cellulose-Derived Carbon Nanofiber@MnO2 and Nitrogen-Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density
    Chen, Li-Feng
    Huang, Zhi-Hong
    Liang, Hai-Wei
    Guan, Qing-Fang
    Yu, Shu-Hong
    [J]. ADVANCED MATERIALS, 2013, 25 (34) : 4746 - 4752
  • [22] Self-assembled porous biomass carbon/RGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes
    Chen, Ruwei
    Li, Xinsheng
    Huang, Quanbo
    Ling, Hao
    Yang, Yang
    Wang, Xiaohui
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 412
  • [23] Graphene Oxide-MnO2 Nanocomposites for Supercapacitors
    Chen, Sheng
    Zhu, Junwu
    Wu, Xiaodong
    Han, Qiaofeng
    Wang, Xin
    [J]. ACS NANO, 2010, 4 (05) : 2822 - 2830
  • [24] Chen WS, 2018, CHEM SOC REV, V47, P2837, DOI [10.1039/c7cs00790f, 10.1039/C7CS00790F]
  • [25] Nanocellulose/polypyrrole aerogel electrodes with higher conductivity via adding vapor grown nano-carbon fibers as conducting networks for supercapacitor application
    Chen, Yanping
    Lyu, Shaoyi
    Han, Shenjie
    Chen, Zhilin
    Wang, Wenjun
    Wang, Siqun
    [J]. RSC ADVANCES, 2018, 8 (70): : 39918 - 39928
  • [26] Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications
    Chen, Yiming
    Zhang, Lin
    Yang, Yang
    Pang, Bo
    Xu, Wenhui
    Duan, Gaigai
    Jiang, Shaohua
    Zhang, Kai
    [J]. ADVANCED MATERIALS, 2021, 33 (11)
  • [27] Porous 3D graphene aerogel co-doped with nitrogen and sulfur for high-performance supercapacitors
    Chen, Yinan
    Hao, Huilian
    Lu, Xuekun
    Li, Wenyao
    He, Guanjie
    Shen, Wenzhong
    Shearing, Paul R.
    Brett, Dan J. L.
    [J]. NANOTECHNOLOGY, 2021, 32 (19)
  • [28] Manganese oxide/nitrogen-doped carbon aerogels from cellulose nanofibrils for high-performance supercapacitor electrodes
    Chen, Yu
    Fang, Lingxiao
    Hu, Yang
    Lu, Yao
    He, Jiacheng
    Wang, Shiwei
    Yang, Quanling
    Shi, Zhuqun
    Xiong, Chuanxi
    [J]. DIAMOND AND RELATED MATERIALS, 2022, 122
  • [29] Biomass-Derived Carbon Fiber Aerogel as a Binder-Free Electrode for High-Rate Supercapacitors
    Cheng, Ping
    Li, Ting
    Yu, Hang
    Zhi, Lei
    Liu, Zonghuai
    Lei, Zhibin
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (04) : 2079 - 2086
  • [30] Nanoporous Fluorinated Metal-Organic Framework-Based Membranes for CO2 Capture
    Chernikova, Valeriya
    Shekhah, Osama
    Belmabkhout, Youssef
    Eddaoudi, Mohamed
    [J]. ACS APPLIED NANO MATERIALS, 2020, 3 (07): : 6432 - 6439