"Inverse Drug Discovery" Strategy To Identify Proteins That Are Targeted by Latent Electrophiles As Exemplified by Aryl Fluorosulfates

被引:231
作者
Mortenson, David E. [1 ,2 ]
Brighty, Gabriel J. [1 ,2 ]
Plate, Lars [1 ,2 ]
Bare, Grant [2 ]
Chen, Wentao [1 ,2 ]
Li, Suhua [2 ]
Wang, Hua [2 ]
Cravatt, Benjamin F. [1 ,2 ,4 ]
Forli, Stefano [3 ]
Powers, Evan T. [2 ]
Sharpless, K. Barry [2 ,4 ]
Wilson, Ian A. [3 ,4 ]
Kelly, Jeffery W. [1 ,2 ,4 ]
机构
[1] Scripps Res Inst, Dept Mol Med, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA
[3] Scripps Res Inst, Dept Integrat Struct & Computat Biol, La Jolla, CA 92037 USA
[4] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
基金
美国国家卫生研究院;
关键词
GLUTATHIONE-S-TRANSFERASE; ACID-BINDING PROTEINS; SERUM NM23-H1 PROTEIN; RETINOIC ACID; ACTIVE-SITE; SELECTIVE INHIBITORS; CHEMICAL PROTEOMICS; PROGNOSTIC FACTOR; OMEGA; REACTIVITY;
D O I
10.1021/jacs.7b08366
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Drug candidates are generally discovered using biochemical screens employing an isolated target protein or by utilizing cell-based phenotypic assays. Both noncovalent and covalent hits emerge from such endeavors. Herein, we exemplify an "Inverse Drug Discovery" strategy in which organic compounds of intermediate complexity harboring weak, but activatable, electrophiles are matched with the protein(s) they react with in cells or cell lysate. An alkyne substructure in each candidate small molecule enables affinity chromatography-mass spectrometry, which produces a list of proteins that each distinct compound reacts with. A notable feature of this approach is that it is agnostic with respect to the cellular proteins targeted. To illustrate this strategy, we employed aryl fluorosulfates, an underexplored class of sulfur(VI) halides, that are generally unreactive unless activated by protein binding. Reversible aryl fluorosulfate binding, correct juxtaposition of protein side chain functional groups, and transition-state stabilization of the S(VI) exchange reaction all seem to be critical for conjugate formation. The aryl fluorosulfates studied thus far exhibit chemoselective reactivity toward Lys and, particularly, Tyr side chains, and can be used to target nonenzymes (e.g., a hormone carrier or a small-molecule carrier protein) as well as enzymes. The "Inverse Drug Discovery" strategy should be particularly attractive as a means to explore latent electrophiles not typically used in medicinal chemistry efforts, until one reacts with a protein target of exceptional interest. Structure-activity data can then be used to enhance the selectivity of conjugate formation or the covalent probe can be used as a competitor to develop noncovalent drug candidates. Here we use the "Inverse Drug Discovery" platform to identify and validate covalent ligands for 11 different human proteins. In the case of one of these proteins, we have identified and validated a small-molecule probe for the first time.
引用
收藏
页码:200 / 210
页数:11
相关论文
共 71 条
[1]   Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype [J].
Adam, GC ;
Sorensen, EJ ;
Cravatt, BF .
NATURE BIOTECHNOLOGY, 2002, 20 (08) :805-809
[2]   Profiling the specific reactivity of the proteome with non-directed activity-based probes [J].
Adam, GC ;
Cravatt, BF ;
Sorensen, EJ .
CHEMISTRY & BIOLOGY, 2001, 8 (01) :81-95
[3]   Rational Design of an Organometallic Glutathione Transferase Inhibitor [J].
Ang, Wee Han ;
Parker, Lorien J. ;
De Luca, Anastasia ;
Juillerat-Jeanneret, Lucienne ;
Morton, Craig J. ;
Lo Bello, Mario ;
Parker, Michael W. ;
Dyson, Paul J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (21) :3854-3857
[4]   Proteome-wide covalent ligand discovery in native biological systems [J].
Backus, Keriann M. ;
Correia, Bruno E. ;
Lum, Kenneth M. ;
Forli, Stefano ;
Horning, Benjamin D. ;
Gonzalez-Paez, Gonzalo E. ;
Chatterjee, Sandip ;
Lanning, Bryan R. ;
Teijaro, John R. ;
Olson, Arthur J. ;
Wolan, Dennis W. ;
Cravatt, Benjamin F. .
NATURE, 2016, 534 (7608) :570-+
[5]   A Fluorogenic Aryl Fluorosulfate for Intraorganellar Transthyretin Imaging in Living Cells and in Caenorhabditis elegans [J].
Baranczak, Aleksandra ;
Liu, Yu ;
Connelly, Stephen ;
Du, Wen-Ge Han ;
Greiner, Erin R. ;
Genereux, Joseph C. ;
Wiseman, R. Luke ;
Eisele, Yvonne S. ;
Bradbury, Nadine C. ;
Dong, Jiajia ;
Noodleman, Louis ;
Sharpless, K. Barry ;
Wilson, Ian A. ;
Encalada, Sandra E. ;
Kelly, Jeffery W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (23) :7404-7414
[6]   Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies [J].
Bauer, Renato A. .
DRUG DISCOVERY TODAY, 2015, 20 (09) :1061-1073
[7]   Modulation of intracellular ROS levels by TIGAR controls autophagy [J].
Bensaad, Karim ;
Cheung, Eric C. ;
Vousden, Karen H. .
EMBO JOURNAL, 2009, 28 (19) :3015-3026
[8]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[9]   Comparison of apo- and heme-bound crystal structures of a truncated human heme oxygenase-2 [J].
Bianchetti, Christopher M. ;
Yi, Li ;
Ragsdale, Stephen W. ;
Phillips, George N., Jr. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (52) :37624-37631
[10]   Identification, characterization, and crystal structure of the omega class glutathione transferases [J].
Board, PG ;
Coggan, M ;
Chelvanayagam, G ;
Easteal, S ;
Jermiin, LS ;
Schulte, GK ;
Danley, DE ;
Hoth, LR ;
Griffor, MC ;
Kamath, AV ;
Rosner, MH ;
Chrunyk, BA ;
Perregaux, DE ;
Gabel, CA ;
Geoghegan, KF ;
Pandit, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (32) :24798-24806