Linking population-level models with growing networks: A class of epidemic models

被引:16
作者
Breban, R [1 ]
Vardavas, R [1 ]
Blower, S [1 ]
机构
[1] Univ Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USA
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 04期
关键词
D O I
10.1103/PhysRevE.72.046110
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a class of growing network models that are directly applicable to epidemiology. We show how to construct a growing network model (individual-level model) that generates the same epidemic-level outcomes as a population-level ordinary differential equation (ODE) model. For concreteness, we analyze the susceptible-infected (SI) ODE model of disease invasion. First, we give an illustrative example of a growing network whose population-level variables are compatible with those of this ODE model. Second, we demonstrate that a growing network model can be found that is equivalent to the Crump-Mode-Jagers (CMJ) continuous-time branching process of the SI ODE model of disease invasion. We discuss the computational advantages that our growing network model has over the CMJ branching process.
引用
收藏
页数:8
相关论文
共 48 条
[1]  
Anderson RM, 1992, INFECT DIS HUMANS DY, P17
[2]  
[Anonymous], 1990, The elements of stochastic processes with application to natural sciences
[3]   Scale-free characteristics of random networks:: the topology of the World-Wide Web [J].
Barabási, AL ;
Albert, R ;
Jeong, H .
PHYSICA A, 2000, 281 (1-4) :69-77
[4]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[5]   Deterministic scale-free networks [J].
Barabási, AL ;
Ravasz, E ;
Vicsek, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 299 (3-4) :559-564
[6]   Modeling the emergence of the 'hot zones': tuberculosis and the amplification dynamics of drug resistance [J].
Blower, SM ;
Chou, T .
NATURE MEDICINE, 2004, 10 (10) :1111-1116
[7]   Predicting the unpredictable: Transmission of drug-resistant HIV [J].
Blower, SM ;
Aschenbach, AN ;
Gershengorn, HB ;
Kahn, JO .
NATURE MEDICINE, 2001, 7 (09) :1016-1020
[8]   Absence of epidemic threshold in scale-free networks with degree correlations -: art. no. 028701 [J].
Boguñá, M ;
Pastor-Satorras, R ;
Vespignani, A .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4-028701
[9]   A GENERAL AGE-DEPENDENT BRANCHING PROCESS .2. [J].
CRUMP, K ;
MODE, CJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 25 (01) :8-&
[10]   A GENERAL AGE-DEPENDENT BRANCHING PROCESS .1. [J].
CRUMP, KS ;
MODE, CJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1968, 24 (03) :494-&