Energy Management for Microgrids: a Reinforcement Learning Approach

被引:16
作者
Levent, Tanguy [1 ]
Preux, Philippe [2 ]
Le Pennec, Erwan [3 ]
Badosa, Jordi [4 ]
Henri, Gonzague [5 ]
Bonnassieux, Yvan [1 ]
机构
[1] CNRS, IP Paris, Ecole Polytech, LPICM, Paris, France
[2] Univ Lille, CNRS, CRIStAL, Lille, France
[3] CNRS, IP Paris, Ecole Polytech, CMAP, Paris, France
[4] Sorbonne, CNRS, ENS PSL, LMD IPSL,Ecole Polytech, Paris, France
[5] Total SA, Paris, France
来源
PROCEEDINGS OF 2019 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE) | 2019年
关键词
Microgrid; Energy Management System; Agent Based; Decision Tree; Q-Learning;
D O I
10.1109/isgteurope.2019.8905538
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a framework based on reinforcement learning for energy management and economic dispatch of an islanded microgrid without any forecasting module. The architecture of the algorithm is divided in two parts: a learning phase trained by a reinforcement learning (RL) algorithm on a small dataset and the testing phase based on a decision tree induced from the trained RL. An advantage of this approach is to create an autonomous agent, able to react in real-time, considering only the past. This framework was tested on real data acquired at Ecole Polytechnique in France over a long period of time, with a large diversity in the type of days considered. It showed near optimal, efficient and stable results in each situation.
引用
收藏
页数:5
相关论文
共 22 条
[1]  
Bellman R.E., 1957, DYNAMIC PROGRAMMING
[2]  
Bertsekas D. P., 1996, Neuro-Dynamic Programming
[3]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[4]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[5]  
Dimeas A.L., 2007, IEEE Power Engineering Society General Meeting, P1
[6]  
Furrer Charlie, 2016, EC TESLA POWERWALL, V2
[7]   SIRTA, a ground-based atmospheric observatory for cloud and aerosolresearch [J].
Haeffelin, M ;
Barthès, L ;
Bock, O ;
Boitel, C ;
Bony, S ;
Bouniol, D ;
Chepfer, H ;
Chiriaco, M ;
Cuesta, J ;
Delanoë, J ;
Drobinski, P ;
Dufresne, JL ;
Flamant, C ;
Grall, M ;
Hodzic, A ;
Hourdin, F ;
Lapouge, R ;
Lemaître, Y ;
Mathieu, A ;
Morille, Y ;
Naud, C ;
Noël, V ;
O'Hirok, W ;
Pelon, J ;
Pietras, C ;
Protat, A ;
Romand, B ;
Scialom, G ;
Vautard, R .
ANNALES GEOPHYSICAE, 2005, 23 (02) :253-275
[8]   Microgrids [J].
Hatziargyriou, Nikos ;
Asano, Hiroshi ;
Iravani, Reza ;
Marnay, Chris .
IEEE POWER & ENERGY MAGAZINE, 2007, 5 (04) :78-94
[9]  
Jasmin E., 2011, ELECT POWER ENERGY S
[10]   Microgrids management [J].
Katiraei, Farid ;
Iravani, Reza ;
Hatziargyriou, Nikos ;
Dimeas, Aris .
IEEE POWER & ENERGY MAGAZINE, 2008, 6 (03) :54-65