Prediction of dislocation nucleation during nanoindentation by the orbital-free density functional theory local quasi-continuum method

被引:35
|
作者
Hayes, RL [1 ]
Fago, M
Ortiz, M
Carter, EA
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] CALTECH, Grad Aeronaut Labs, Pasadena, CA 91125 USA
[3] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
关键词
multiscale modeling; indentation; dislocation nucleation; embedded atom method; density functional theory;
D O I
10.1137/040615869
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the orbital-free density functional theory local quasi-continuum (OFDFT-LQC) method: a first-principles-based multiscale material model that embeds OFDFT unit cells at the subgrid level of a finite element computation. Although this method cannot address intermediate length scales such as grain boundary evolution or microtexture, it is well suited to study material phenomena such as continuum level prediction of dislocation nucleation and the effects of varying alloy composition. The model is illustrated with the simulation of dislocation nucleation during indentation into the (111) and (110) surfaces of aluminum and compared against results obtained using an embedded atom method interatomic potential. None of the traditional dislocation nucleation criteria ( Hertzian principal shear stress, actual principal shear stress, von Mises strain, or resolved shear stress) correlates with a previously proposed local elastic stability criterion, Lambda. Discrepancies in dislocation nucleation predictions between OFDFT-LQC and other simulations highlight the need for accurate, atomistic constitutive models and the use of realistically sized indenters in the simulations.
引用
收藏
页码:359 / 389
页数:31
相关论文
共 17 条
  • [1] Orbital-free density functional theory for materials research
    Witt, William C.
    del Rio, Beatriz G.
    Dieterich, Johannes M.
    Carter, Emily A.
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (07) : 777 - 795
  • [2] An efficient real space method for Orbital-Free Density-Functional Theory
    Garcia-Cervera, Carlos J.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2007, 2 (02) : 334 - 357
  • [3] Recovering orbital information from orbital-free density functional theory
    Zhou, Baojing
    Wang, Yan Alexander
    ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 1458 - 1461
  • [4] Preconditioners and Electron Density Optimization in Orbital-Free Density Functional Theory
    Hung, Linda
    Huang, Chen
    Carter, Emily A.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2012, 12 (01) : 135 - 161
  • [5] Recent advancements and challenges in orbital-free density functional theory
    Xu, Qiang
    Ma, Cheng
    Mi, Wenhui
    Wang, Yanchao
    Ma, Yanming
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2024, 14 (03)
  • [7] Orbital-free density functional theory simulations of dislocations in aluminum
    Shin, Ilgyou
    Ramasubramaniam, Ashwin
    Huang, Chen
    Hung, Linda
    Carter, Emily A.
    PHILOSOPHICAL MAGAZINE, 2009, 89 (34-36) : 3195 - 3213
  • [8] Orbital-Free Density Functional Theory for Molecular Structure Calculations
    Chen, Huajie
    Zhou, Aihui
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2008, 1 (01) : 1 - 28
  • [9] Can orbital-free density functional theory simulate molecules?
    Xia, Junchao
    Huang, Chen
    Shin, Ilgyou
    Carter, Emily A.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (08)
  • [10] Hybridized kinetic energy functional for orbital-free density functional method
    Yin, Wan-Jian
    Gong, Xin-Gao
    PHYSICS LETTERS A, 2009, 373 (04) : 480 - 483