The parabolic Monge-Ampere equation on compact almost Hermitian manifolds

被引:11
作者
Chu, Jianchun [1 ]
机构
[1] Peking Univ, Sch Math Sci, Yiheyuan Rd 5, Beijing 100871, Peoples R China
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2020年 / 761卷
关键词
NONLINEAR ELLIPTIC-EQUATIONS; COMPLEX; METRICS;
D O I
10.1515/crelle-2018-0019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the long time existence and uniqueness of solutions to the parabolic Monge-Ampere equation on compact almost Hermitian manifolds. We also show that the normalization of solution converges to a smooth function in C-infinity topology as t -> infinity. Up to scaling, the limit function is a solution of the Monge-Ampere equation. This gives a parabolic proof of existence of solutions to the Monge-Ampere equation on almost Hermitian manifolds.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条