The parabolic Monge-Ampere equation on compact almost Hermitian manifolds

被引:12
作者
Chu, Jianchun [1 ]
机构
[1] Peking Univ, Sch Math Sci, Yiheyuan Rd 5, Beijing 100871, Peoples R China
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2020年 / 761卷
关键词
NONLINEAR ELLIPTIC-EQUATIONS; COMPLEX; METRICS;
D O I
10.1515/crelle-2018-0019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the long time existence and uniqueness of solutions to the parabolic Monge-Ampere equation on compact almost Hermitian manifolds. We also show that the normalization of solution converges to a smooth function in C-infinity topology as t -> infinity. Up to scaling, the limit function is a solution of the Monge-Ampere equation. This gives a parabolic proof of existence of solutions to the Monge-Ampere equation on almost Hermitian manifolds.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 36 条
[1]  
[Anonymous], 1957, S S LEFSCH
[2]  
[Anonymous], J EUR MATH SOC JEMS
[4]  
CHERRIER P, 1987, B SCI MATH, V111, P343
[5]  
Chu JC, 2016, CALC VAR PARTIAL DIF, V55, DOI 10.1007/s00526-015-0948-5
[6]   THE COMPLEX MONGE-AMPERE EQUATION ON SOME COMPACT HERMITIAN MANIFOLDS [J].
Chu, Jianchun .
PACIFIC JOURNAL OF MATHEMATICS, 2015, 276 (02) :369-386
[7]   The C2,α Estimate of Complex Monge-Ampere Equation [J].
Dinew, Slawomir ;
Zhang, Xi ;
Zhang, Xiangwen .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (05) :1713-1722
[8]  
Gill M, 2011, COMMUN ANAL GEOM, V19, P277
[9]   On a class of fully nonlinear elliptic equations on Hermitian manifolds [J].
Guan, Bo ;
Sun, Wei .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) :901-916
[10]   A MONGE-AMPERE TYPE FULLY NONLINEAR EQUATION ON HERMITIAN MANIFOLDS [J].
Guan, Bo ;
Li, Qun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (06) :1991-1999