The parabolic Monge-Ampere equation on compact almost Hermitian manifolds
被引:11
作者:
Chu, Jianchun
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Yiheyuan Rd 5, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, Yiheyuan Rd 5, Beijing 100871, Peoples R China
Chu, Jianchun
[1
]
机构:
[1] Peking Univ, Sch Math Sci, Yiheyuan Rd 5, Beijing 100871, Peoples R China
来源:
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK
|
2020年
/
761卷
关键词:
NONLINEAR ELLIPTIC-EQUATIONS;
COMPLEX;
METRICS;
D O I:
10.1515/crelle-2018-0019
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove the long time existence and uniqueness of solutions to the parabolic Monge-Ampere equation on compact almost Hermitian manifolds. We also show that the normalization of solution converges to a smooth function in C-infinity topology as t -> infinity. Up to scaling, the limit function is a solution of the Monge-Ampere equation. This gives a parabolic proof of existence of solutions to the Monge-Ampere equation on almost Hermitian manifolds.