Complex tilings

被引:25
作者
Durand, Bruno [1 ]
Levin, Leonid A. [2 ]
Shen, Alexander [3 ]
机构
[1] Lab Informat Fondamentale Marseille, F-13453 Marseille, France
[2] Boston Univ, Dept Comp Sci, Boston, MA 02215 USA
[3] Inst Problems Informat Transmission, Moscow, Russia
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
tilings; Kolmogorov complexity; recursion theory;
D O I
10.2178/jsl/1208359062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the minimal complexity of tilings of a plane with a given tile set. We note that every tile set admits either no tiling or some tiling with G(n) Kolmogorov complexity of its (n x n)-squares. We construct tile sets for which this bound is tight: all (n x n)-squares in all tilings have complexity Omega(n). This adds a quantitative angle to classical results on non-recursivity of tilings - that we also develop in terms of Turing degrees of unsolvability.
引用
收藏
页码:593 / 613
页数:21
相关论文
共 20 条
[1]  
Berger R., 1966, MEMOIRS AM MATH SOC, V66
[2]  
Borger E., 1996, CLASSICAL DECISION P
[3]  
CERVELLE J, 2000, LECT NOTES COMPUTER, V1770
[4]   Local rules and global order, or aperiodic tilings [J].
Durand, B ;
Levin, L ;
Shen, A .
MATHEMATICAL INTELLIGENCER, 2005, 27 (01) :64-68
[5]   Tilings and quasiperiodicity [J].
Durand, B .
THEORETICAL COMPUTER SCIENCE, 1999, 221 (1-2) :61-75
[6]  
DURAND B, 2001, STOC, P732
[7]   Reliable cellular automata with self-organization [J].
Gács, P .
JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (1-2) :45-267
[8]   AVERAGE CASE COMPLETENESS [J].
GUREVICH, Y .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1991, 42 (03) :346-398
[9]   NONRECURSIVE TILINGS OF PLANE .1. [J].
HANF, W .
JOURNAL OF SYMBOLIC LOGIC, 1974, 39 (02) :283-285
[10]  
INGERSENT K, 1991, QUASICRYSTALS STATE, P185