Soil clustering by fuzzy c-means algorithm

被引:55
|
作者
Goktepe, AB [1 ]
Altun, S [1 ]
Sezer, A [1 ]
机构
[1] Ege Univ, Dept Civil Engn, TR-35100 Izmir, Turkey
关键词
fine grained soils; fuzzy c-means; hard k-means; clustering;
D O I
10.1016/j.advengsoft.2005.01.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, hard k-means and fuzzy c-means algorithms are utilized for the classification of fine grained soils in terms of shear strength and plasticity index parameters. In order to collect data, several laboratory tests are performed on 120 undisturbed soil samples, which are obtained from Antalya region. Additionally, for the evaluation of the generalization ability of clustering analysis, 20 fine grained soil samples collected from the other regions of Turkey are also classified using the same clustering algorithms. Fuzzy c-means algorithm exhibited better clustering performance over hard k-means classifier. As expected, clustering analysis produced worse outcomes for soils collected from different regions than those of obtained from a specific region. In addition to its precise classification ability, fuzzy c-means approach is also capable of handling the uncertainty existing in soil parameters. As a result, fuzzy c-means clustering can be successfully applied to classify regional fine grained soils on the basis of shear strength and plasticity index parameters. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:691 / 698
页数:8
相关论文
共 50 条
  • [1] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530
  • [2] An Improved Fuzzy C-means Clustering Algorithm
    Duan, Lingzi
    Yu, Fusheng
    Zhan, Li
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1199 - 1204
  • [3] An efficient Fuzzy C-Means clustering algorithm
    Hung, MC
    Yang, DL
    2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 225 - 232
  • [4] A novel fuzzy C-means clustering algorithm
    Li, Cuixia
    Yu, Jian
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2006, 4062 : 510 - 515
  • [5] The global Fuzzy C-Means clustering algorithm
    Wang, Weina
    Zhang, Yunjie
    Li, Yi
    Zhang, Xiaona
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 3604 - +
  • [6] An Accelerated Fuzzy C-Means clustering algorithm
    Hershfinkel, D
    Dinstein, I
    APPLICATIONS OF FUZZY LOGIC TECHNOLOGY III, 1996, 2761 : 41 - 52
  • [7] Suppressed fuzzy C-means clustering algorithm
    Fan, JL
    Zhen, WZ
    Xie, WX
    PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1607 - 1612
  • [8] Unsupervised Multiview Fuzzy C-Means Clustering Algorithm
    Hussain, Ishtiaq
    Sinaga, Kristina P.
    Yang, Miin-Shen
    ELECTRONICS, 2023, 12 (21)
  • [9] Optimizing parameters of fuzzy c-means clustering algorithm
    Liu, Yongchao
    Zhang, Yunjie
    FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2007, : 633 - 638
  • [10] Kernelized fuzzy attribute C-means clustering algorithm
    Liu, Jingwei
    Xu, Meizhi
    FUZZY SETS AND SYSTEMS, 2008, 159 (18) : 2428 - 2445