SCSA: A Cell Type Annotation Tool for Single-Cell RNA-seq Data

被引:99
作者
Cao, Yinghao
Wang, Xiaoyue [1 ]
Peng, Gongxin [1 ]
机构
[1] Chinese Acad Med Sci, Ctr Bioinformat, Inst Basic Med Sci, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
single-cell RNA sequencing; cell type annotation; CellMarker database; score annotation model; differentially expressed genes; MESENCHYMAL STEM-CELLS; TRANSCRIPTOME; FIBROBLASTS;
D O I
10.3389/fgene.2020.00490
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Currently most methods take manual strategies to annotate cell types after clustering the single-cell RNA sequencing (scRNA-seq) data. Such methods are labor-intensive and heavily rely on user expertise, which may lead to inconsistent results. We present SCSA, an automatic tool to annotate cell types from scRNA-seq data, based on a score annotation model combining differentially expressed genes (DEGs) and confidence levels of cell markers from both known and user-defined information. Evaluation on real scRNA-seq datasets from different sources with other methods shows that SCSA is able to assign the cells into the correct types at a fully automated mode with a desirable precision.
引用
收藏
页数:8
相关论文
共 30 条
[1]   Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage [J].
Aran, Dvir ;
Looney, Agnieszka P. ;
Liu, Leqian ;
Wu, Esther ;
Fong, Valerie ;
Hsu, Austin ;
Chak, Suzanna ;
Naikawadi, Ram P. ;
Wolters, Paul J. ;
Abate, Adam R. ;
Butte, Atul J. ;
Bhattacharya, Mallar .
NATURE IMMUNOLOGY, 2019, 20 (02) :163-+
[2]   Design and computational analysis of single-cell RNA-sequencing experiments [J].
Bacher, Rhonda ;
Kendziorski, Christina .
GENOME BIOLOGY, 2016, 17
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   Comparison between fibroblasts and mesenchymal stem cells derived from dermal and adipose tissue [J].
Brohem, C. A. ;
de Carvalho, C. M. ;
Radoski, C. L. ;
Santi, F. C. ;
Baptista, M. C. ;
Swinka, B. B. ;
Urban, C. de A. ;
de Araujo, L. R. R. ;
Graf, R. M. ;
Feferman, I. H. S. ;
Lorencini, M. .
INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, 2013, 35 (05) :448-457
[5]   The Functional Annotation of Mammalian Genomes: The Challenge of Phenotyping [J].
Brown, Steve D. M. ;
Wurst, Wolfgang ;
Kuehn, Ralf ;
Hancock, John M. .
ANNUAL REVIEW OF GENETICS, 2009, 43 :305-333
[6]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[7]  
Cao Y., 2019, SCSA CELL TYPE ANNOT, DOI [10.1101/2019.12.22.886481, DOI 10.1101/2019.12.22.886481]
[8]   Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm [J].
Chu, Li-Fang ;
Leng, Ning ;
Zhang, Jue ;
Hou, Zhonggang ;
Mamott, Daniel ;
Vereide, David T. ;
Choi, Jeea ;
Kendziorski, Christina ;
Stewart, Ron ;
Thomson, James A. .
GENOME BIOLOGY, 2016, 17
[9]   Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer [J].
Chung, Woosung ;
Eum, Hye Hyeon ;
Lee, Hae-Ock ;
Lee, Kyung-Min ;
Lee, Han-Byoel ;
Kim, Kyu-Tae ;
Ryu, Han Suk ;
Kim, Sangmin ;
Lee, Jeong Eon ;
Park, Yeon Hee ;
Kan, Zhengyan ;
Han, Wonshik ;
Park, Woong-Yang .
NATURE COMMUNICATIONS, 2017, 8
[10]   Mesenchymal stem cells: the fibroblasts' new clothes? [J].
Haniffa, Muzlifah A. ;
Collin, Matthew P. ;
Buckley, Christopher D. ;
Dazzi, Francesco .
HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, 2009, 94 (02) :258-263