Balanced edge colorings

被引:14
作者
Balister, PN [1 ]
Kostochka, A
Li, H
Schelp, RH
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Russian Acad Sci, Math Inst, Siberian Branch, Novosibirsk 630090, Russia
[3] Univ Paris 11, Rech Informat Lab, URA 410, CNRS, F-91405 Orsay, France
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1016/S0095-8956(03)00073-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper contains two principal results. The first proves that any graph G can be given a balanced proper edge coloring by kappa colors for any kappa > x' (G). Here balanced means that the number of vertices incident with any set of d colors is essentially fixed for each d, that is, for two different d-sets of colors the number of vertices incident with each of them can differ by at most 2. The second result gives upper bounds for the vertex-distinguishing edge chromatic number of graphs G with few vertices of low degree. In particular, it proves a conjecture of Burris and Schelp in the case when Delta(G) greater than or equal to root2\V(G)\ + 4 and delta(G) greater than or equal to 5. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:3 / 20
页数:18
相关论文
共 11 条
  • [1] AIGNER M, 1992, COMBINATORICA, V90, P1
  • [2] Packing circuits into KN
    Balister, P
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (06) : 463 - 499
  • [3] Vertex distinguishing colorings of graphs with Δ (G)=2
    Balister, PN
    Bollobás, B
    Schelp, RH
    [J]. DISCRETE MATHEMATICS, 2002, 252 (1-3) : 17 - 29
  • [4] On the vertex-distinguishing proper edge-colorings of graphs
    Bazgan, C
    Harkat-Benhamdine, A
    Li, H
    Wozniak, M
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 75 (02) : 288 - 301
  • [5] Burris A.C., 1993, THESIS MEMPHIS STATE
  • [6] Cerny J., 1996, Math. Slovaca, V46, P21
  • [7] Strong edge colorings of graphs
    Favaron, O
    Li, H
    Schelp, RH
    [J]. DISCRETE MATHEMATICS, 1996, 159 (1-3) : 103 - 109
  • [8] Hornak M, 1995, ARS COMBINATORIA, V41, P289
  • [9] HORNAK M, ASYMPTOTIC BEHAV OBS
  • [10] SCHELP R. H., 1997, J GRAPH THEOR, V26, P70