Balanced edge colorings

被引:14
作者
Balister, PN [1 ]
Kostochka, A
Li, H
Schelp, RH
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Russian Acad Sci, Math Inst, Siberian Branch, Novosibirsk 630090, Russia
[3] Univ Paris 11, Rech Informat Lab, URA 410, CNRS, F-91405 Orsay, France
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1016/S0095-8956(03)00073-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper contains two principal results. The first proves that any graph G can be given a balanced proper edge coloring by kappa colors for any kappa > x' (G). Here balanced means that the number of vertices incident with any set of d colors is essentially fixed for each d, that is, for two different d-sets of colors the number of vertices incident with each of them can differ by at most 2. The second result gives upper bounds for the vertex-distinguishing edge chromatic number of graphs G with few vertices of low degree. In particular, it proves a conjecture of Burris and Schelp in the case when Delta(G) greater than or equal to root2\V(G)\ + 4 and delta(G) greater than or equal to 5. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:3 / 20
页数:18
相关论文
共 11 条
[1]  
AIGNER M, 1992, COMBINATORICA, V90, P1
[2]   Packing circuits into KN [J].
Balister, P .
COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (06) :463-499
[3]   Vertex distinguishing colorings of graphs with Δ (G)=2 [J].
Balister, PN ;
Bollobás, B ;
Schelp, RH .
DISCRETE MATHEMATICS, 2002, 252 (1-3) :17-29
[4]   On the vertex-distinguishing proper edge-colorings of graphs [J].
Bazgan, C ;
Harkat-Benhamdine, A ;
Li, H ;
Wozniak, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 75 (02) :288-301
[5]  
Burris A.C., 1993, THESIS MEMPHIS STATE
[6]  
Cerny J., 1996, Math. Slovaca, V46, P21
[7]   Strong edge colorings of graphs [J].
Favaron, O ;
Li, H ;
Schelp, RH .
DISCRETE MATHEMATICS, 1996, 159 (1-3) :103-109
[8]  
Hornak M, 1995, ARS COMBINATORIA, V41, P289
[9]  
HORNAK M, ASYMPTOTIC BEHAV OBS
[10]  
SCHELP R. H., 1997, J GRAPH THEOR, V26, P70