IMPACT: Image-based physiological artifacts estimation and correction technique for functional MRI

被引:58
作者
Chuang, KH [1 ]
Chen, JH [1 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Sect 1, Interdisciplinary MRI MRS Lab, Taipei 10764, Taiwan
关键词
functional MRI; physiological noise; retrospective motion correction; image processing; motion artifact;
D O I
10.1002/mrm.1197
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Functional MRI (fMRI) signal variation induced by respiratory and cardiac motion affects the activation signal and limits the accuracy of analysis. Current physiological motion correction methods require either synchronization with external monitoring of respiration and heartbeat, specialized pulse sequence design, or k-space data. The IMage-based Physiological Artifacts estimation and Correction Technique (IMPACT), which is free from these constraints, is described. When images are acquired fast enough to sample physiological motion without aliasing, respiratory and cardiac signals can be directly estimated from magnitude images. Physiological artifacts are removed by reordering images according to the estimated respiratory and cardiac phases and then subtracting the Fourier-fitted variation from magnitude images. Compared with the k-space-based method, this method can efficiently and effectively reduce the overall signal fluctuation in the brain and increase the activated area. With this new technique, physiological artifacts can be reduced using traditional fMRI pulse sequences, and existing data can be corrected and reanalyzed without additional experiments. (C) 2001 Wiley-Liss, Inc.
引用
收藏
页码:344 / 353
页数:10
相关论文
共 21 条
[1]   PROCESSING STRATEGIES FOR TIME-COURSE DATA SETS IN FUNCTIONAL MRI OF THE HUMAN BRAIN [J].
BANDETTINI, PA ;
JESMANOWICZ, A ;
WONG, EC ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1993, 30 (02) :161-173
[2]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[3]   Reduction of physiological fluctuations in fMRI using digital filters [J].
Biswal, B ;
DeYoe, EA ;
Hyde, JS .
MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (01) :107-113
[4]   Localization of cardiac-induced signal change in fMRI [J].
Dagli, MS ;
Ingeholm, JE ;
Haxby, JV .
NEUROIMAGE, 1999, 9 (04) :407-415
[5]  
Glover GH, 2000, MAGNET RESON MED, V44, P162, DOI 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO
[6]  
2-E
[7]  
Guimaraes AR, 1998, HUM BRAIN MAPP, V6, P33, DOI 10.1002/(SICI)1097-0193(1998)6:1<33::AID-HBM3>3.0.CO
[8]  
2-M
[9]   ARTIFACTS DUE TO STIMULUS CORRELATED MOTION IN FUNCTIONAL IMAGING OF THE BRAIN [J].
HAJNAL, JV ;
MYERS, R ;
OATRIDGE, A ;
SCHWIESO, JE ;
YOUNG, IR ;
BYDDER, GM .
MAGNETIC RESONANCE IN MEDICINE, 1994, 31 (03) :283-291
[10]   REDUCTION OF SIGNAL FLUCTUATION IN FUNCTIONAL MRI USING NAVIGATOR ECHOES [J].
HU, XP ;
KIM, SG .
MAGNETIC RESONANCE IN MEDICINE, 1994, 31 (05) :495-503