Predicting sporadic Alzheimer's disease progression via inherited Alzheimer's disease-informed machine-learning

被引:43
作者
Franzmeier, Nicolai [1 ]
Koutsouleris, Nikolaos [2 ]
Benzinger, Tammie [3 ,4 ]
Goate, Alison [5 ,6 ]
Karch, Celeste M. [4 ,7 ,8 ]
Fagan, Anne M. [4 ,7 ,9 ]
McDade, Eric [4 ,9 ]
Duering, Marco [1 ]
Dichgans, Martin [1 ,10 ,11 ]
Levin, Johannes [10 ,11 ,12 ]
Gordon, Brian A. [4 ,13 ,14 ]
Lim, Yen Ying [15 ]
Masters, Colin L. [15 ]
Rossor, Martin [16 ]
Fox, Nick C. [16 ]
O'Connor, Antoinette [16 ]
Chhatwal, Jasmeer [17 ]
Salloway, Stephen [18 ]
Danek, Adrian [12 ]
Hassenstab, Jason [4 ,9 ,14 ]
Schofield, Peter R. [19 ,20 ]
Morris, John C. [4 ,8 ,9 ]
Bateman, Randall J. [4 ,9 ]
Ewers, Michael [1 ]
机构
[1] Ludwig Maximilians Univ LMU, Klinikum Univ Munchen, Inst Stroke & Dementia Res, Munich, Germany
[2] Ludwig Maximilians Univ LMU, Dept Psychiat & Psychotherapy, Munich, Germany
[3] Washington Univ, Dept Radiol, St Louis, MO 63110 USA
[4] Washington Univ, Knight Alzheimers Dis Res Ctr, St Louis, MO 63110 USA
[5] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[6] Icahn Sch Med Mt Sinai, Ronald M Loeb Ctr Alzheimers Dis, Dept Neurosci, New York, NY 10029 USA
[7] Washington Univ, Hope Ctr Neurol Disorders, St Louis, MO 63110 USA
[8] Washington Univ, Dept Psychiat, St Louis, MO 63110 USA
[9] Washington Univ, Dept Neurol, St Louis, MO 63110 USA
[10] Munich Cluster Syst Neurol, Munich, Germany
[11] German Ctr Neurodegenerat Dis DZNE, Munich, Germany
[12] Ludwig Maximilians Univ Munchen, Dept Neurol, Munich, Germany
[13] Washington Univ, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
[14] Washington Univ, Dept Psychol & Brain Sci, St Louis, MO 63110 USA
[15] Univ Melbourne, Florey Inst, Parkville, Vic, Australia
[16] UCL, Dementia Res Ctr, Queen Sq, London, England
[17] Harvard Med Sch, Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02115 USA
[18] Brown Univ, Warren Alpert Med Sch, Dept Neurol, Providence, RI 02912 USA
[19] Neurosci Res Australia, Randwick, NSW, Australia
[20] Univ New South Wales, Sch Med Sci, Sydney, NSW, Australia
基金
英国医学研究理事会; 加拿大健康研究院; 美国国家卫生研究院;
关键词
Alzheimer's disease; autosomal-dominant Alzheimer's disease; biomarkers; machine learning; progression prediction; MRI; PET; risk enrichment; AUTOSOMAL-DOMINANT; COGNITIVE DECLINE; ONSET; BIOMARKERS; ATROPHY; TAU; PET;
D O I
10.1002/alz.12032
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction: Developing cross-validated multi-biomarker models for the prediction of the rate of cognitive decline in Alzheimer's disease (AD) is a critical yet unmet clinical challenge. Methods: We applied support vector regression to AD biomarkers derived from cerebrospinal fluid, structural magnetic resonance imaging (MRI), amyloid-PET and fluorodeoxyglucose positron-emission tomography (FDG-PET) to predict rates of cognitive decline. Prediction models were trained in autosomal-dominant Alzheimer's disease (ADAD, n = 121) and subsequently cross-validated in sporadic prodromal AD (n = 216). The sample size needed to detect treatment effects when using model-based risk enrichment was estimated. Results: A model combining all biomarker modalities and established in ADAD predicted the 4-year rate of decline in global cognition (R-2 = 24%) and memory (R-2 = 25%) in sporadic AD. Model-based risk-enrichment reduced the sample size required for detecting simulated intervention effects by 50%-75%. Discussion: Our independently validated machine-learning model predicted cognitive decline in sporadic prodromal AD and may substantially reduce sample size needed in clinical trials in AD.
引用
收藏
页码:501 / 511
页数:11
相关论文
共 50 条
[1]   On the path to 2025: understanding the Alzheimer's disease continuum [J].
Aisen, Paul S. ;
Cummings, Jeffrey ;
Jack, Clifford R., Jr. ;
Morris, John C. ;
Sperling, Reisa ;
Froelich, Lutz ;
Jones, Roy W. ;
Dowsett, Sherie A. ;
Matthews, Brandy R. ;
Raskin, Joel ;
Scheltens, Philip ;
Dubois, Bruno .
ALZHEIMERS RESEARCH & THERAPY, 2017, 9
[2]  
Ansart M, 2019, STAT METHODS MED RES
[3]   Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease [J].
Aschenbrenner, Andrew J. ;
Gordon, Brian A. ;
Benzinger, Tammie L. S. ;
Morris, John C. ;
Hassenstab, Jason J. .
NEUROLOGY, 2018, 91 (09) :E859-E866
[4]   Predicting Alzheimer's risk: Why and how? [J].
Barnes, Deborah E. ;
Lee, Sei J. .
ALZHEIMERS RESEARCH & THERAPY, 2011, 3 (06)
[5]   Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease [J].
Bateman, Randall J. ;
Xiong, Chengjie ;
Benzinger, Tammie L. S. ;
Fagan, Anne M. ;
Goate, Alison ;
Fox, Nick C. ;
Marcus, Daniel S. ;
Cairns, Nigel J. ;
Xie, Xianyun ;
Blazey, Tyler M. ;
Holtzman, David M. ;
Santacruz, Anna ;
Buckles, Virginia ;
Oliver, Angela ;
Moulder, Krista ;
Aisen, Paul S. ;
Ghetti, Bernardino ;
Klunk, William E. ;
McDade, Eric ;
Martins, Ralph N. ;
Masters, Colin L. ;
Mayeux, Richard ;
Ringman, John M. ;
Rossor, Martin N. ;
Schofield, Peter R. ;
Sperling, Reisa A. ;
Salloway, Stephen ;
Morris, John C. .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 367 (09) :795-804
[6]   Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease [J].
Bateman, Randall J. ;
Aisen, Paul S. ;
De Strooper, Bart ;
Fox, Nick C. ;
Lemere, Cynthia A. ;
Ringman, John M. ;
Salloway, Stephen ;
Sperling, Reisa A. ;
Windisch, Manfred ;
Xiong, Chengjie .
ALZHEIMERS RESEARCH & THERAPY, 2011, 3 (01)
[7]   A Novel Imaging Marker for Small Vessel Disease Based on Skeletonization of White Matter Tracts and Diffusion Histograms [J].
Baykara, Ebru ;
Gesierich, Benno ;
Adam, Ruth ;
Tuladhar, Anil Man ;
Biesbroek, J. Matthijs ;
Koek, Huiberdina L. ;
Ropele, Stefan ;
Jouvent, Eric ;
Chabriat, Hugues ;
Ertl-Wagner, Birgit ;
Ewers, Michael ;
Schmidt, Reinhold ;
de Leeuw, Frank-Erik ;
Biessels, Geert Jan ;
Dichgans, Martin ;
Duering, Marco .
ANNALS OF NEUROLOGY, 2016, 80 (04) :581-592
[8]   Regional variability of imaging biomarkers in autosomal dominant Alzheimer's disease [J].
Benzinger, Tammie L. S. ;
Blazey, Tyler ;
Jack, Clifford R., Jr. ;
Koeppe, Robert A. ;
Su, Yi ;
Xiong, Chengjie ;
Raichle, Marcus E. ;
Snyder, Abraham Z. ;
Ances, Beau M. ;
Bateman, Randall J. ;
Cairns, Nigel J. ;
Fagan, Anne M. ;
Goate, Alison ;
Marcus, Daniel S. ;
Aisen, Paul S. ;
Christensen, Jon J. ;
Ercole, Lindsay ;
Hornbeck, Russ C. ;
Farrar, Angela M. ;
Aldea, Patricia ;
Jasielec, Mateusz S. ;
Owen, Christopher J. ;
Xie, Xianyun ;
Mayeux, Richard ;
Brickman, Adam ;
McDade, Eric ;
Klunk, William ;
Mathis, Chester A. ;
Ringman, John ;
Thompson, Paul M. ;
Ghetti, Bernardino ;
Saykin, Andrew J. ;
Sperling, Reisa A. ;
Johnson, Keith A. ;
Salloway, Stephen ;
Correia, Stephen ;
Schofield, Peter R. ;
Masters, Colin L. ;
Rowe, Christopher ;
Villemagne, Victor L. ;
Martins, Ralph ;
Ourselin, Sebastien ;
Rossor, Martin N. ;
Fox, Nick C. ;
Cash, David M. ;
Weiner, Michael W. ;
Holtzman, David M. ;
Buckles, Virginia D. ;
Moulder, Krista ;
Morris, John C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (47) :E4502-E4509
[9]   Modeling and prediction of clinical symptom trajectories in Alzheimer's disease using longitudinal data [J].
Bhagwat, Nikhil ;
Viviano, Joseph D. ;
Voineskos, Aristotle N. ;
Chakravarty, M. Mallar .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (09)
[10]   Technical performance of a novel, fully automated electrochemiluminescence immunoassay for the quantitation of β-amyloid (1-42) in human cerebrospinal fluid [J].
Bittner, Tobias ;
Zetterberg, Henrik ;
Teunissen, Charlotte E. ;
Ostlund, Richard E., Jr. ;
Militello, Michael ;
Andreasson, Ulf ;
Hubeek, Isabelle ;
Gibson, David ;
Chu, David C. ;
Eichenlaub, Udo ;
Heiss, Peter ;
Kobold, Uwe ;
Leinenbach, Andreas ;
Madin, Kairat ;
Manuilova, Ekaterina ;
Rabe, Christina ;
Blennow, Kaj .
ALZHEIMERS & DEMENTIA, 2016, 12 (05) :517-526