Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution

被引:50
作者
Barnett, J. Wesley [1 ]
Sullivan, Matthew R. [1 ]
Long, Joshua A. [3 ]
Tang, Du [1 ]
Thong Nguyen [1 ]
Ben-Amotz, Dor [3 ]
Gibb, Bruce C. [2 ]
Ashbaugh, Henry S. [1 ]
机构
[1] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA
[2] Tulane Univ, Dept Chem, New Orleans, LA 70118 USA
[3] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
HIGH-ENERGY WATER; ANION COMPLEXATION; OCTA-ACID; BINDING; DYNAMICS; FORCE;
D O I
10.1038/s41557-020-0458-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There are many open questions regarding the hydration of solvent-exposed non-polar tracts and pockets in proteins. Although water is predicted to de-wet purely repulsive surfaces and evacuate crevices, the extent of de-wetting is unclear when ubiquitous van der Waals interactions are in play. The structural simplicity of synthetic supramolecular hosts imbues them with considerable potential to address this issue. To this end, here we detail a combination of densimetry and molecular dynamics simulations of three cavitands, coupled with calorimetric studies of their complexes with short-chain carboxylates. Our results reveal the range of wettability possible within the ostensibly identical cavitand pockets-which differ only in the presence and/or position of the methyl groups that encircle the portal to their non-polar pockets. The results demonstrate the ability of macrocycles to template water cavitation within their binding sites and show how the orientation of methyl groups can trigger the drying of non-polar pockets in liquid water, which suggests new avenues to control guest complexation.
引用
收藏
页码:589 / +
页数:8
相关论文
共 55 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   Solvent cavitation under solvophobic confinement [J].
Ashbaugh, Henry S. .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (06)
[3]   Colloquium:: Scaled particle theory and the length scales of hydrophobicity [J].
Ashbaugh, HS ;
Pratt, LR .
REVIEWS OF MODERN PHYSICS, 2006, 78 (01) :159-178
[4]   Cucurbiturils: from synthesis to high-affinity binding and catalysis [J].
Assaf, Khaleel I. ;
Nau, Werner M. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (02) :394-418
[5]   Water-Mediated Hydrophobic Interactions [J].
Ben-Amotz, Dor .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 67, 2016, 67 :617-+
[6]   The Hydrophobic Effect Revisited-Studies with Supramolecular Complexes Imply High-Energy Water as a Noncovalent Driving Force [J].
Biedermann, Frank ;
Nau, Werner M. ;
Schneider, Hans-Joerg .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (42) :11158-11171
[7]   Cucurbit[8]uril and Blue-Box: High-Energy Water Release Overwhelms Electrostatic Interactions [J].
Biedermann, Frank ;
Vendruscolo, Michele ;
Scherman, Oren A. ;
De Simone, Alfonso ;
Nau, Werner M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (39) :14879-14888
[8]   Cucurbit[7]uril.Guest Pair with an Attomolar Dissociation Constant [J].
Cao, Liping ;
Sekutor, Marina ;
Zavalij, Peter Y. ;
Mlinaric-Majerski, Kata ;
Glaser, Robert ;
Isaacs, Lyle .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (04) :988-993
[9]   Anion Complexation and The Hofmeister Effect [J].
Carnegie, Ryan S. ;
Gibb, Corinne L. D. ;
Gibb, Bruce C. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (43) :11498-11500
[10]   Interfaces and the driving force of hydrophobic assembly [J].
Chandler, D .
NATURE, 2005, 437 (7059) :640-647