Markovian trees: properties and algorithms

被引:25
作者
Bean, Nigel G. [1 ]
Kontoleon, Nectarios [1 ]
Taylor, Peter G. [2 ]
机构
[1] Univ Adelaide, Adelaide, SA 5005, Australia
[2] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
branching processes; matrix analytic methods;
D O I
10.1007/s10479-007-0295-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we introduce a structure called the Markovian tree (MT). We define the MT and explore its alternative representation as a continuous-time Markovian Multitype Branching Process. We then develop two algorithms, the Depth and Order algorithms to determine the probability of eventual extinction of the MT process. We show that both of these algorithms have very natural physically intuitive interpretations and are analogues of the Neuts and U algorithms in Matrix-analytic Methods. Furthermore, we show that a special case of the Depth algorithm sheds new light on the interpretation of the sample paths of the Neuts algorithm.
引用
收藏
页码:31 / 50
页数:20
相关论文
共 13 条
  • [1] ATHREYA KB, 1971, BRANCHING PROCESSES
  • [2] BRIGHT L, 1995, COMMUNICATIONS STAT, V11, P497
  • [3] In the garden of branching processes
    Dorman, KS
    Sinsheimer, JS
    Lange, K
    [J]. SIAM REVIEW, 2004, 46 (02) : 202 - 229
  • [4] Harris TE, 1963, Die Grundlehren der mathematischen Wissenschaften, V119
  • [5] KONTOLEON N, 2005, THESIS U ADELAIDE AD
  • [6] Latouche G, 2003, ANN APPL PROBAB, V13, P628
  • [7] Latouche Guy, 1999, Introduction to Matrix Analytic Methods in Stochastic Modeling, V5, DOI DOI 10.1137/1.9780898719734
  • [8] Lucantoni DM, 1991, COMMUN STAT STOCHAST, V7, P1
  • [9] Inferring evolutionary process from phylogenetic tree shape
    Mooers, AO
    Heard, SB
    [J]. QUARTERLY REVIEW OF BIOLOGY, 1997, 72 (01) : 31 - 54
  • [10] Neuts Marcel F., 1994, MATRIX GEOMETRIC SOL