Integrability analysis of the Shimizu-Morioka system

被引:14
|
作者
Huang, Kaiyin [1 ]
Shi, Shaoyun [2 ,3 ]
Li, Wenlei [2 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610000, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[3] Jilin Univ, State Key Lab Automot Simulat & Control, Changchun 130012, Peoples R China
关键词
First integral; Integrability; Shimizu-Morioka system; Differential galois theory; INVARIANT ALGEBRAIC-SURFACES; 1ST INTEGRALS; BIFURCATION; CHAOS; NONINTEGRABILITY; EXISTENCE;
D O I
10.1016/j.cnsns.2019.105101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to give some new insights into the Shimizu-Morioka system (x) over dot = y, (y) over dot = x - lambda y - xz, (z) over dot = -alpha z + x(2), from the integrability point of view. Firstly, we propose a linear scaling in time and coordinates which converts the Shimizu-Morioka system into a special case of the Rucklidge system when alpha not equal 0 and discuss the relationship between Shimizu-Morioka system and Rucklidge system. Based on this observation, Darboux integrability of the Shimizu-Morioka system with alpha not equal 0 is trivially derived from the corresponding results on the Rucklidge system. When alpha not equal 0, we investigate Darboux integrability of the Shimizu-Morioka system by the Grobner basis in algebraic geometry. Secondly, we use the stability of the singular points and periodic orbits to study the nonexistence of global C-1 first integrals of the Shimizu-Morioka system. Finally, in the case alpha not equal 0, we prove it is not rationally integrable for almost all parameter values by an extended Morales-Ramis theory, and in the case alpha not equal 0, we show that it is not algebraically integrable by quasi-homogeneous decompositions and Kowalevski exponents. Our results are in accord with the fact that this system admits chaotic behaviors for a large range of its parameters. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Shimizu-Morioka混沌系统的电路设计及自适应控制研究
    雷腾飞
    陈恒
    王震
    温州大学学报(自然科学版), 2015, 36 (01) : 23 - 31
  • [32] Shimizu-Morioka系统与Finance系统生成Lorenz混沌的微分几何策略
    张端
    施佳琴
    孙莹
    杨旭华
    叶蕾
    物理学报, 2019, 68 (24) : 67 - 76
  • [33] Anti-difference quadratic compound synchronization of Lorenz, Rössler, modified finance, and Shimizu-Morioka chaotic systems
    Khattar, Dinesh
    Agrawal, Neha
    Singh, Govind
    INDIAN JOURNAL OF PHYSICS, 2024, 98 (04) : 1415 - 1423
  • [34] Generation of n x m-Wing Lorenz-Like Attractors From a Modified Shimizu-Morioka Model
    Yu, Simin
    Tang, Wallace K. S.
    Lu, Jinhu
    Chen, Guanrong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2008, 55 (11) : 1168 - 1172
  • [35] Chaos control in Shimizu Morioka system by Lie algebraic exact linearization
    Islam M.
    Islam B.
    Islam N.
    Islam, Mitul (mitul.islam@gmail.com), 1600, Springer Science and Business Media Deutschland GmbH (02): : 386 - 394
  • [36] 多频激励忆阻型Shimizu-Morioka系统的簇发振荡及机理分析
    李志军
    方思远
    周成义
    电子与信息学报, 2020, 42 (04) : 878 - 887
  • [37] Experimental Observation of Extreme Events in the Shimizu Morioka Oscillator
    Thamilmaran, K.
    Thamilvizhi, T.
    Kumarasamy, Suresh
    Durairaj, Premraj
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (16):
  • [38] 基于反步法的不确定分数阶Shimizu-Morioka混沌系统的自适应无源同步
    赵飞
    周卫光
    郑永爱
    扬州大学学报(自然科学版), 2022, 25 (01) : 43 - 47
  • [39] Anti-control of Hopf bifurcation in the Shimizu–Morioka system using an explicit criterion
    Yi Yang
    Xiaofeng Liao
    Tao Dong
    Nonlinear Dynamics, 2017, 89 : 1453 - 1461
  • [40] Dynamics at infinity and other global dynamical aspects of Shimizu–Morioka equations
    Marcelo Messias
    Márcio R. Alves Gouveia
    Claudio Pessoa
    Nonlinear Dynamics, 2012, 69 : 577 - 587