GRADIENT ESTIMATES FOR A NONLINEAR PARABOLIC EQUATION WITH POTENTIAL UNDER GEOMETRIC FLOW

被引:0
作者
Abolarinwa, Abimbola [1 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9QH, E Sussex, England
关键词
Gradient estimates; Harnack inequalities; parabolic equations; geometric flows; RICCI FLOW;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, g) be an n dimensional complete Riemannian manifold. In this article we prove local Li-Yau type gradient estimates for all positive solutions to the nonlinear parabolic equation (partial derivative(t) - Delta(g) + R)u(x, t) = -au(x,t) log u(x, t) along the generalised geometric flow on M. Here R = R(x, t) is a smooth potential function and a is an arbitrary constant. As an application we derive a global estimate and a space-time Harnack inequality.
引用
收藏
页数:11
相关论文
共 16 条
[1]  
Abolarinwa A., J NONLINEAR EVOLUTIO
[2]  
Abolarinwa A., 2014, Adv. Theor. Appl. Math, V9, P155
[3]   Gradient estimates for the heat equation under the Ricci flow [J].
Bailesteanu, Mihai ;
Cao, Xiaodong ;
Pulemotov, Artem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3517-3542
[4]  
Bailesteanu Mihai, ARXIV13090139
[5]   Differential Harnack estimates for parabolic equations [J].
Cao, Xiaodong ;
Zhang, Zhou .
COMPLEX AND DIFFERENTIAL GEOMETRY, 2011, 8 :87-+
[6]   DIFFERENTIAL HARNACK ESTIMATES FOR TIME-DEPENDENT HEAT EQUATIONS WITH POTENTIALS [J].
Cao, Xiaodong ;
Hamilton, Richard S. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (04) :989-1000
[7]  
Chow B, 2010, MATH SURVEYS MONOGRA, V163
[8]  
Chow B., 2010, Mathematical Surveys and Monographs, V163
[9]  
Chow B., 2008, Mathematical Surveys and Monographs, V144
[10]  
Chow B., 2006, Hamiltons Ricci Flow