GRADIENT ESTIMATES FOR A NONLINEAR PARABOLIC EQUATION WITH POTENTIAL UNDER GEOMETRIC FLOW

被引:0
|
作者
Abolarinwa, Abimbola [1 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9QH, E Sussex, England
关键词
Gradient estimates; Harnack inequalities; parabolic equations; geometric flows; RICCI FLOW;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, g) be an n dimensional complete Riemannian manifold. In this article we prove local Li-Yau type gradient estimates for all positive solutions to the nonlinear parabolic equation (partial derivative(t) - Delta(g) + R)u(x, t) = -au(x,t) log u(x, t) along the generalised geometric flow on M. Here R = R(x, t) is a smooth potential function and a is an arbitrary constant. As an application we derive a global estimate and a space-time Harnack inequality.
引用
收藏
页数:11
相关论文
共 50 条