Unimodality of Hitting Times for Stable Processes

被引:2
作者
Letemplier, Julien [1 ]
Simon, Thomas [1 ,2 ]
机构
[1] Univ Lille 1, Lab Paul Painleve, Cite Sci, F-59655 Villeneuve Dascq, France
[2] Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
来源
SEMINAIRE DE PROBABILITES XLVI | 2014年 / 2123卷
关键词
Hitting time; Kanter random variable; Self-decomposability; Size; bias; Stable Levy process; Unimodality; LEVY PROCESSES; DENSITIES; POINTS;
D O I
10.1007/978-3-319-11970-0_13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the hitting times for points of real alpha-stable Levy processes (1 < alpha <= 2) are unimodal random variables. The argument relies on strong unimodality and several recent multiplicative identities in law. In the symmetric case we use a factorization of Yano et al. (Semin Probab XLII: 187-227, 2009), whereas in the completely asymmetric case we apply an identity of the second author (Simon, Stochastics 83( 2):203-214, 2011). The method extends to the general case thanks to a fractional moment evaluation due to Kuznetsov et al. (Electr. J. Probab. 19:30, 1-26, 2014), for which we also provide a short independent proof.
引用
收藏
页码:345 / 357
页数:13
相关论文
共 17 条
  • [1] Chaumont L., 2003, Exercises in Probability: A Guided Tour from Measure Theory to Random Processes, via Conditioning
  • [2] Multiplicative strong unimodality
    Cuculescu, I
    Theodorescu, R
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 1998, 40 (02) : 205 - 214
  • [3] Further examples of GGC and HCM densities
    Jedidi, Wissem
    Simon, Thomas
    [J]. BERNOULLI, 2013, 19 (5A) : 1818 - 1838
  • [4] STABLE DENSITIES UNDER CHANGE OF SCALE AND TOTAL VARIATION INEQUALITIES
    KANTER, M
    [J]. ANNALS OF PROBABILITY, 1975, 3 (04) : 697 - 707
  • [5] The hitting time of zero for a stable process
    Kuznetsov, A.
    Kyprianou, A. E.
    Pardo, J. C.
    Watson, A. R.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 26
  • [6] On the density of the supremum of a stable process
    Kuznetsov, A.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (03) : 986 - 1003
  • [7] LEVY PROCESSES - ABSOLUTE CONTINUITY OF HITTING TIMES FOR POINTS
    MONRAD, D
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 37 (01): : 43 - 49
  • [8] Pestana D., 1977, MATH P CAMBRIDG PHIL, V82, P289
  • [9] UNIMODALITY OF PASSAGE TIMES FOR ONE-DIMENSIONAL STRONG MARKOV-PROCESSES
    ROSLER, U
    [J]. ANNALS OF PROBABILITY, 1980, 8 (04) : 853 - 859
  • [10] Sato K.I., 1999, PROCESSES INFINITELY