Metastability of reversible condensed zero range processes on a finite set

被引:49
作者
Beltran, J. [2 ,3 ]
Landim, C. [1 ,4 ]
机构
[1] IMPA, BR-22460 Rio De Janeiro, Brazil
[2] Ecole Polytech Fed Lausanne, Inst Math, Stn 8, CH-1015 Lausanne, Switzerland
[3] PUCP, Lima 100, Peru
[4] Univ Rouen, CNRS, UMR 6085, F-76801 St Etienne, France
关键词
Metastability; Condensation; Zero range processes; INVARIANT-MEASURES;
D O I
10.1007/s00440-010-0337-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let r : S x S -> R+ be the jump rates of an irreducible random walk on a finite set S, reversible with respect to some probability measure m. For alpha > 1, let g : N -> R+ be given by g(0) = 0, g(1) = 1, g(k) = (k/k - 1)(alpha), k >= 2. Consider a zero range process on S in which a particle jumps from a site x, occupied by k particles, to a site y at rate g(k)r(x, y). Let N stand for the total number of particles. In the stationary state, as N up arrow infinity, all particles but a finite number accumulate on one single site. We show in this article that in the time scale N1+alpha the site which concentrates almost all particles evolves as a random walk on S whose transition rates are proportional to the capacities of the underlying random walk.
引用
收藏
页码:781 / 807
页数:27
相关论文
共 9 条
[1]   Thermodynamic limit for the invariant measures in supercritical zero range processes [J].
Armendariz, Ines ;
Loulakis, Michail .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 145 (1-2) :175-188
[2]   Tunneling and Metastability of Continuous Time Markov Chains [J].
Beltran, J. ;
Landim, C. .
JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (06) :1065-1114
[3]  
Beltran J., 2010, TUNNELING META UNPUB
[4]   Canonical analysis of condensation in factorised steady states [J].
Evans, MR ;
Majumdar, SN ;
Zia, RKP .
JOURNAL OF STATISTICAL PHYSICS, 2006, 123 (02) :357-390
[5]   Nonequilibrium statistical mechanics of the zero-range process and related models [J].
Evans, MR ;
Hanney, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (19) :R195-R240
[6]   Condensation for a fixed number of independent random variables [J].
Ferrari, Pablo A. ;
Landim, Claudio ;
Sisko, Valentin V. .
JOURNAL OF STATISTICAL PHYSICS, 2007, 128 (05) :1153-1158
[7]   Dynamics of the condensate in zero-range processes [J].
Godrèche, C ;
Luck, JM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (33) :7215-7237
[8]   Condensation in the zero range process:: Stationary and dynamical properties [J].
Grosskinsky, S ;
Schütz, GM ;
Spohn, H .
JOURNAL OF STATISTICAL PHYSICS, 2003, 113 (3-4) :389-410
[9]  
Jeon I, 2000, ANN PROBAB, V28, P1162