Density models for streamer discharges: Beyond cylindrical symmetry and homogeneous media

被引:65
作者
Luque, A. [1 ]
Ebert, U. [2 ,3 ]
机构
[1] CSIC, IAA, E-18080 Granada, Spain
[2] CWI, NL-1009 AB Amsterdam, Netherlands
[3] Tech Univ Eindhoven, Dept Appl Phys, Eindhoven, Netherlands
关键词
Streamers; Electric discharges; Density models; CATHODE-DIRECTED STREAMER; CHARGE SIMULATION METHOD; POSITIVE STREAMER; ELECTRON-TRANSPORT; ATMOSPHERIC-PRESSURE; NUMERICAL-SIMULATION; LOWER IONOSPHERE; HIGH-VOLTAGE; PROPAGATION; AIR;
D O I
10.1016/j.jcp.2011.04.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Streamer electrical discharges are often investigated with computer simulations of density models (also called reaction-drift-diffusion models). We review these models, detailing their physical foundations, their range of validity and the most relevant numerical algorithms employed in solving them. We focus particularly on schemes of adaptive refinement, used to resolve the multiple length scales in a streamer discharge without a high computational cost. We then report recent results from these models, emphasizing developments that go beyond cylindrically symmetrical streamers propagating in homogeneous media. These include interacting streamers, branching streamers and sprite streamers in inhomogeneous media. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:904 / 918
页数:15
相关论文
共 94 条
  • [21] The multiscale nature of streamers
    Ebert, U.
    Montijn, C.
    Briels, T. M. P.
    Hundsdorfer, W.
    Meulenbroek, B.
    Rocco, A.
    van Veldhuizen, E. M.
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2006, 15 (02) : S118 - S129
  • [22] Multiple scales in streamer discharges, with an emphasis on moving boundary approximations
    Ebert, U.
    Brau, F.
    Derks, G.
    Hundsdorfer, W.
    Kao, C-Y
    Li, C.
    Luque, A.
    Meulenbroek, B.
    Nijdam, S.
    Ratushnaya, V.
    Schaefer, L.
    Tanveer, S.
    [J]. NONLINEARITY, 2011, 24 (01) : C1 - C26
  • [23] EBERT U, 2008, J PHYS D, V41, DOI DOI 10.1088/0022-3727/41123/230301
  • [24] Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning
    Ebert, Ute
    Nijdam, Sander
    Li, Chao
    Luque, Alejandro
    Briels, Tanja
    van Veldhuizen, Eddie
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
  • [25] Experimental analysis and modelling of positive streamer in air: towards an estimation of O and N radical production
    Eichwald, O.
    Ducasse, O.
    Dubois, D.
    Abahazem, A.
    Merbahi, N.
    Benhenni, M.
    Yousfi, M.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (23)
  • [26] TELEVISION IMAGE OF A LARGE UPWARD ELECTRICAL-DISCHARGE ABOVE A THUNDERSTORM SYSTEM
    FRANZ, RC
    NEMZEK, RJ
    WINCKLER, JR
    [J]. SCIENCE, 1990, 249 (4964) : 48 - 51
  • [27] Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models
    Hagelaar, GJM
    Pitchford, LC
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2005, 14 (04) : 722 - 733
  • [28] Altitude resolved sprite spectra with 3 ms temporal resolution
    Kanmae, T.
    Stenbaek-Nielsen, H. C.
    McHarg, M. G.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (07)
  • [29] Koren B., 1993, NUMERICAL METHODS AD, P117
  • [30] A MORE ACCURATE SCHARFETTER-GUMMEL ALGORITHM OF ELECTRON-TRANSPORT FOR SEMICONDUCTOR AND GAS-DISCHARGE SIMULATION
    KULIKOVSKY, AA
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 119 (01) : 149 - 155