Deligne categories and representations of the infinite symmetric group

被引:6
作者
Barter, Daniel [1 ,4 ]
Entova-Aizenbud, Inna [2 ]
Heidersdorf, Thorsten [3 ,5 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Ben Gurion Univ Negev, Dept Math, Beer Sheva, Israel
[3] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[4] Australian Natl Univ, Math Sci Inst, Canberra, ACT, Australia
[5] Max Planck Inst Math, Bonn, Germany
关键词
Deligne categories; FI-modules; Representations of the infinite symmetric group; Tensor categories; Stable representation theory; Symmetric group;
D O I
10.1016/j.aim.2019.01.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a connection between two settings of representation stability for the symmetric groups S-n over C. One is the symmetric monoidal category Rep(S-infinity) of algebraic representations of the infinite symmetric group S-infinity = U-n S-n, related to the theory of FI-modules. The other is the family of rigid symmetric monoidal Deligne categories Rep(S-t), t is an element of C, together with their abelian versions Rep(ab)(S-t), constructed by Comes and Ostrik. We show that for any t is an element of C the natural functor Rep(S-infinity) -> Rep(ab)(S-t) is an exact symmetric faithful monoidal functor, and compute its action on the simple representations of S-infinity. Considering the highest weight structure on Rep(ab)(S-t), we show that the image of any object of Rep(S-infinity) has a filtration with standard objects in Rep(ab)(S-t). As a by-product of the proof, we give answers to the questions posed by P. Deligne concerning the cohomology of some complexes in the Deligne category Rep(S-t), and their specializations at non-negative integers n. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 47
页数:47
相关论文
共 17 条
  • [1] SCHUR-WEYL DUALITY FOR DELIGNE CATEGORIES II: THE LIMIT CASE
    Aizenbud, Inna Entova
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2016, 285 (01) : 185 - 224
  • [2] Schur-Weyl Duality for Deligne Categories
    Aizenbud, Inna Entova
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (18) : 8959 - 9060
  • [3] FI-MODULES AND STABILITY FOR REPRESENTATIONS OF SYMMETRIC GROUPS
    Church, Thomas
    Ellenberg, Jordan S.
    Farb, Benson
    [J]. DUKE MATHEMATICAL JOURNAL, 2015, 164 (09) : 1833 - 1910
  • [4] CLINE E, 1988, J REINE ANGEW MATH, V391, P85
  • [5] On Deligne's category (Rep) under barab (Sd)
    Comes, Jonathan
    Ostrik, Victor
    [J]. ALGEBRA & NUMBER THEORY, 2014, 8 (02) : 473 - 496
  • [6] On blocks of Deligne's category Rep(St)
    Comes, Jonathan
    Ostrik, Victor
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (02) : 1331 - 1377
  • [7] Deligne P., 2007, Tata Inst. Fund. Res. Stud. Math., V19, P209
  • [8] Entova-Aizenbud I., 2016, J ALGEBR COMB, V44
  • [9] Entova-Aizenbud I., 2015, ARXIV151107699MATHRT, DOI [10.1093/imrn/rny144, DOI 10.1093/IMRN/RNY144]
  • [10] Etingof P., 2015, MATH SURVEYS MONOGRA