Quasi-Cyclic LDPC Codes: Influence of Proto- and Tanner-Graph Structure on Minimum Hamming Distance Upper Bounds

被引:92
作者
Smarandache, Roxana [1 ]
Vontobel, Pascal O. [2 ]
机构
[1] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[2] Hewlett Packard Labs, Palo Alto, CA 94304 USA
基金
美国国家科学基金会;
关键词
Convolutional code; girth; graph cover; low-density parity-check (LDPC) matrix; proto-graph; proto-matrix; pseudo-codeword; quasi-cyclic (QC) code; Tanner graph; weight matrix; PARITY-CHECK CODES; ALGEBRAIC CONSTRUCTION; PSEUDOCODEWORDS;
D O I
10.1109/TIT.2011.2173244
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quasi-cyclic (QC) low-density parity-check (LDPC) codes are an important instance of proto-graph-based LDPC codes. In this paper we present upper bounds on the minimum Hamming distance of QC LDPC codes and study how these upper bounds depend on graph structure parameters (like variable degrees, check node degrees, girth) of the Tanner graph and of the underlying proto-graph. Moreover, for several classes of proto-graphs we present explicit QC LDPC code constructions that achieve (or come close to) the respective minimum Hamming distance upper bounds. Because of the tight algebraic connection between QC codes and convolutional codes, we can state similar results for the free Hamming distance of convolutional codes. In fact, some QC code statements are established by first proving the corresponding convolutional code statements and then using a result by Tanner that says that the minimum Hamming distance of a QC code is upper bounded by the free Hamming distance of the convolutional code that is obtained by "unwrapping" the QC code.
引用
收藏
页码:585 / 607
页数:23
相关论文
共 45 条
[1]  
[Anonymous], 1963, Low-Density Parity-Check Codes
[2]   Lowering the Error Floor of LDPC Codes Using Cyclic Liftings [J].
Asvadi, Reza ;
Banihashemi, Amir H. ;
Ahmadian-Attari, Mahmoud .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (04) :2213-2224
[3]  
Bocharova I. E., IEEE T INF THEORY
[4]   A BEAST for prowling in trees [J].
Bocharova, IE ;
Handlery, M ;
Johannesson, R ;
Kudryashov, BD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (06) :1295-1302
[5]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[6]   On Distance Properties of Quasi-Cyclic Protograph-Based LDPC Codes [J].
Butler, Brian K. ;
Siegel, Paul H. .
2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, :809-813
[7]   A link between quasi-cyclic codes and convolutional codes [J].
Esmaeili, M ;
Gulliver, TA ;
Secord, NP ;
Mahmoud, SA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) :431-435
[8]  
Fan J. L, 2000, P 2 INT S TURB COD R
[9]   Using linear programming to decode binary linear codes [J].
Feldman, J ;
Wainwright, MJ ;
Karger, DR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (03) :954-972
[10]  
Feldman J., 2003, THESIS MIT CAMBRIDGE