Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission

被引:529
作者
Pascual, Olivier [1 ,2 ,3 ]
Ben Achour, Sarrah [1 ,2 ,3 ]
Rostaing, Philippe [1 ,2 ,3 ]
Triller, Antoine [1 ,2 ,3 ]
Bessis, Alain [1 ,2 ,3 ]
机构
[1] Ecole Normale Super, Inst Biol, F-75005 Paris, France
[2] Inst Natl Sante & Rech Med U1024, F-75005 Paris, France
[3] Ctr Natl Rech Sci, Unite Mixte Rech 8197, F-75005 Paris, France
关键词
inflammation; lipopolysaccharide; purine; toll-like receptor 4; epilepsy; LONG-TERM POTENTIATION; TOLL-LIKE RECEPTOR-4; GLUTAMATE RELEASE; IN-VIVO; NEURONAL EXCITABILITY; FEBRILE SEIZURES; P2Y(1) RECEPTORS; P2Y1; RECEPTOR; BRAIN-INJURY; PIVOTAL ROLE;
D O I
10.1073/pnas.1111098109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell type. Microglia are highly dynamic and closely associated with neurons and astrocytes. They react rapidly to modifications of their environment and are able to release molecules known to control neuronal function and synaptic transmission. Therefore, microglia display functional features of synaptic partners, but their involvement in the regulation of synaptic transmission has not yet been addressed. We have used a combination of pharmacological approaches with electrophysiological analysis on acute hippocampal slices and ATP assays in purified cell cultures to show that activation of microglia induces a rapid increase of spontaneous excitatory postsynaptic currents. We found that this modulation is mediated by binding of ATP to P2Y1R located on astrocytes and is independent of TNF alpha or NOS2. Our data indicate that, on activation, microglia cells rapidly release small amounts of ATP, and astrocytes, in turn, amplified this release. Finally, P2Y1 stimulation of astrocytes increased excitatory postsynaptic current frequency through a metabotropic glutamate receptor 5-dependent mechanism. These results indicate that microglia are genuine regulators of neurotransmission and place microglia as upstream partners of astrocytes. Because pathological activation of microglia and alteration of neurotransmission are two early symptoms of most brain diseases, our work also provides a basis for understanding synaptic dysfunction in neuronal diseases.
引用
收藏
页码:E197 / E205
页数:9
相关论文
共 84 条
[1]   Pivotal Role of TLR4 Receptors in Alcohol-Induced Neuroinflammation and Brain Damage [J].
Alfonso-Loeches, Silvia ;
Pascual-Lucas, Maya ;
Blanco, Ana M. ;
Sanchez-Vera, Irene ;
Guerri, Consuelo .
JOURNAL OF NEUROSCIENCE, 2010, 30 (24) :8285-8295
[2]   ATP-induced ATP release from astrocytes [J].
Anderson, CM ;
Bergher, JP ;
Swanson, RA .
JOURNAL OF NEUROCHEMISTRY, 2004, 88 (01) :246-256
[3]   Astrocytes play a critical role in transient heterosynaptic depression in the rat hippocampal CA1 region [J].
Andersson, My ;
Blomstrand, Fredrik ;
Hanse, Eric .
JOURNAL OF PHYSIOLOGY-LONDON, 2007, 585 (03) :843-852
[4]   Glutamate released from glial cells synchronizes neuronal activity in the hippocampus [J].
Angulo, MC ;
Kozlov, AS ;
Charpak, S ;
Audinat, E .
JOURNAL OF NEUROSCIENCE, 2004, 24 (31) :6920-6927
[5]   PU.1 determines the self-renewal capacity of erythroid progenitor cells [J].
Back, J ;
Dierich, A ;
Bronn, C ;
Kastner, P ;
Chan, S .
BLOOD, 2004, 103 (10) :3615-3623
[6]   Control of synaptic strength by glial TNFα [J].
Beattie, EC ;
Stellwagen, D ;
Morishita, W ;
Bresnahan, JC ;
Ha, BK ;
Von Zastrow, M ;
Beattie, MS ;
Malenka, RC .
SCIENCE, 2002, 295 (5563) :2282-2285
[7]   Identification of genes preferentially expressed by microglia and upregulated during cuprizone-induced inflammation [J].
Bedard, Andreanne ;
Tremblay, Pierrot ;
Chernomoretz, Ariel ;
Vallieres, Luc .
GLIA, 2007, 55 (08) :777-789
[8]   Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis [J].
Beers, David R. ;
Henkel, Jenny S. ;
Xiao, Qin ;
Zhao, Weihua ;
Wang, Jinghong ;
Yen, Albert A. ;
Siklos, Laszlo ;
McKercher, Scott R. ;
Appel, Stanley H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (43) :16021-16026
[9]   Microglial control of neuronal death and synaptic properties [J].
Bessis, Alain ;
Bechade, Catherine ;
Bernard, Delphine ;
Roumier, Anne .
GLIA, 2007, 55 (03) :233-238
[10]   CXCR4-activated astrocyte glutamate release via TNFa: amplification by microglia triggers neurotoxicity [J].
Bezzi, P ;
Domercq, M ;
Brambilla, L ;
Galli, R ;
Schols, D ;
De Clercq, E ;
Vescovi, A ;
Bagetta, G ;
Kollias, G ;
Meldolesi, J ;
Volterra, A .
NATURE NEUROSCIENCE, 2001, 4 (07) :702-710