A special full-state hybrid projective synchronization in symmetrical chaotic systems

被引:18
作者
Li, Rui-hong [1 ]
机构
[1] Xidian Univ, Dept Appl Math, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
anti-synchronization; complete synchronization; symmetric chaotic systems;
D O I
10.1016/j.amc.2007.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A special full-state hybrid projective synchronization type is proposed in this paper. The anti-synchronization and complete synchronization can be achieved simultaneously in this new synchronization phenomenon. We point out how to realize this synchronization in chaotic systems: anti-synchronization in symmetrical coordinate subspace and complete synchronization in its normal coordinate subspace. Two illustrative examples, multi-scroll chaotic system by the partial Lyapunov stability theory, and a four-dimensional chaotic system by the invariance principle of differential equation are presented to exhibit this new synchronization. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:321 / 329
页数:9
相关论文
共 26 条
[1]   Breaking projective chaos synchronization secure communication using filtering and generalized synchronization [J].
Alvarez, G ;
Li, SJ ;
Montoya, F ;
Pastor, G ;
Romera, M .
CHAOS SOLITONS & FRACTALS, 2005, 24 (03) :775-783
[2]  
[Anonymous], 2002, NONLINEAR SYSTEMS
[3]   Secure digital communication using controlled projective synchronisation of chaos [J].
Chee, CY ;
Xu, DL .
CHAOS SOLITONS & FRACTALS, 2005, 23 (03) :1063-1070
[4]  
Chen G., 1998, CHAOS ORDER WORLD SC
[5]  
CHEN G, 2003, DYNAMICS LORENZ FAMI
[6]   Feedback anticontrol of discrete chaos [J].
Chen, GR ;
Lai, DJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (07) :1585-1590
[7]   Anti-control of chaos in rigid body motion [J].
Chen, HK ;
Lee, CI .
CHAOS SOLITONS & FRACTALS, 2004, 21 (04) :957-965
[8]  
Drazin P., 1992, Nonlinear systems
[9]   Chaos synchronization and parameter identification for gyroscope system [J].
Ge, ZM ;
Lee, JK .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 163 (02) :667-682
[10]  
Gopalsamy K., 2013, Stability and Oscillations in Delay Differential Equations of Population Dynamics, V74